Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 050505    DOI: 10.1088/1674-1056/20/5/050505
GENERAL Prev   Next  

New results on stability criteria for neural networks with time-varying delays

O.M. Kwona)†, J.W. Kwonb), and S.H. Kimc)
a School of Electrical Engineering, Chungbuk National University, 410 SungBong-Ro, Heungduk-gu, Cheongju 361-763, Republic of Korea; b Department of Computer Engineering, Kyungwon University, San 65, Sujung-gu, Sungnam 461-701, Republic of Korea; School of Integrated Technology, College of Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
Abstract  In this paper, the problem of stability analysis for neural networks with time-varying delays is considered. By constructing a new augmented Lyapunov–Krasovskii's functional and some novel analysis techniques, improved delay-dependent criteria for checking the stability of the neural networks are established. The proposed criteria are presented in terms of linear matrix inequalities (LMIs) which can be easily solved and checked by various convex optimization algorithms. Two numerical examples are included to show the superiority of our results.
Keywords:  neural networks      time-varying delays      stability      Lyapunov method  
Received:  03 September 2010      Revised:  10 December 2010      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the MKE (The Ministry of Knowledge Economy), Korea, under the ITRC (Information Technology Research Center) support program supervised by the IITA (Institute for Information Technology Advancement) (Grant No. IITA-2009-C1090-0904-0007).

Cite this article: 

O.M. Kwon, J.W. Kwon, and S.H. Kim New results on stability criteria for neural networks with time-varying delays 2011 Chin. Phys. B 20 050505

[1] Lynch M, Patel H, Abrahamse A and Rajendran A R 2001Proceedings of International Joint Conference on NeuralNetworks, Washinton DC, USA, July 15-19, 2001
[2] Eckmann J P, Feinerman O, Gruendlinger L, Moses E,Soriano J and Tlusty T 2007 Physics Reports 449 54
[3] Ercsey-Ravasz M, Roska T and N?eda Z 2008 Physica D237 1226
[4] Ramesh M and Narayanan S 2001 Chaos, Solitons andFractals 12 2395
[5] Cannas B, Cincotti S, Marchesi M and Pilo F 2010 Chaos,Solitons and Fractals 12 2109
[6] Otawara K, Fan L T, Tsutsumi A, Yano T, Kuramoto Kand Yoshida K 2002 Chaos, Solitons and Fractals 13 353
[7] Tang Y, Fang J A, Lu S and Miao Q 2008 Modern Phys.Lett. B 22 2391
[8] Arik S 2003 Phys. Lett. A 311 504.
[9] Ensari T and Arik S 2005 IEEE Trans. Automat. Contr.11 1781
[10] Ensari T and Arik S 2005 IEEE Trans. Circuits Syst. II52 126
[11] Samli R and Arik S 2009 Appl. Math. Comput. 210 564
[12] Xu S, Lam J and Ho D W C 2005 Phys. Lett. A 342 322
[13] Xu S, Lam J, Ho D W C and Zou Y 2005 IEEE Tans.Syst. Man Cybern. Part B 35 1317
[14] Park J H and Kwon O M 2009 Modern Phys. Lett. B 2335
[15] Park J H and Kwon O M 2008 Modern Phys. Lett. B 223159
[16] Meng J and Wang X 2008 Modern Phys. Lett. B 22 181
[17] Cheng Z and Cao J 2006 Nonlinear Dyn. 46 363
[18] Kwon O M and Park J H 2008 Appl. Math. Comput. 205417
[19] Li T, Guo L and Sun C 2007 Neurocomputing 71 439
[20] Kwon O M and Park J H 2009 Phys. Lett. A 373 529
[21] Xu S, Lam J and Ho D W C 2008 Int. J. Bifurcation andChaos 18 245
[22] Chen S, Zhao W and Xu Y 2009 Math. Comput. in Simul.19 1527
[23] Zheng Z and Wang J 2006 Neural Netw. 19 1528
[24] Xu S, Zhang W X and Zou Y 2009 IEEE Trans. CircuitsSyst. II 56 325
[25] Sun J, Liu G P, Chen J and Rees D 2009 Phys. Lett. A373 342
[26] Xu S and Lam J 2008 Int. J. Syst. Sci. 39 1095
[27] Ariba Y and Gouaisbaut F 2007 Proceedings of the 46thIEEE Conference on Decision and Control, New Orleans,USA, December, 2007
[28] Gu K 2000 Proceedings of the 39th IEEE Conference onDecision and Control, Sydney, Australia, December, 2000
[29] Skelton R E, Iwasaki T and Grigoradis K M 1997 A Uni-ˉed Algebraic Approach to Linear Control Design (NewYork: Taylor and Francis)
[30] Boyd S, Ghaoui L E, Feron E and Balakrishnan V 1994Linear Matrix Inequalities in System and Control The-ory(Philadelphia: SIAM)
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[3] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[4] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[5] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[9] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[10] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[11] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[12] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[13] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[14] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[15] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
No Suggested Reading articles found!