Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 043105    DOI: 10.1088/1674-1056/20/4/043105
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

MRCI study of spectroscopic and molecular properties of X1$\varSigma$g+ and A1$\varPi$u electronic states of the C2 radical

Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), and Zhu Zun-Lue(朱遵略)
College of Physics and Information Engineering, Henan Normal University, Xinxiang 453007, China
Abstract  The potential energy curves (PECs) of $X^{1}\varSigma _{\rm g}^{ + }$ and $A^{1}\varPi_{\rm u}$ electronic states of the C$_{2}$ radical have been studied using the full valence complete active space self-consistent field (CASSCF) method followed by the highly accurate  valence internally contracted multireference configuration interaction (MRCI) approach in conjunction with the aug-cc-pV6Z basis set for  internuclear separations from 0.08~nm to 1.66~nm. With these PECs of the C$_{2}$ radical, the spectroscopic parameters of three isotopologues  ($^{12}$C$_{2}$, $^{12}$C$^{13}$C and $^{13}$C$_{2})$ have been determined. Compared in detail with previous studies reported in the literature,  excellent agreement has been found. The complete vibrational levels $G(\upsilon$), inertial rotation constants $B_{\upsilon }$ and centrifugal  distortion constants $D_{\upsilon }$ for the $^{12}$C$_{2}$, $^{12}$C$^{13}$C and $^{13}$C$_{2}$ isotopologues have been calculated for the  first time for the $X^{1}\varSigma _{\rm g}^{ + }$ and $A^{1}$$\varPi_{\rm u}$ electronic states when the rotational quantum number $J$ equals zero. The results are in excellent agreement with previous experimental data in the literature, which shows that the presented molecular  constants in this paper are reliable and accurate.
Keywords:  potential energy curve      spectroscopic parameter      molecular constant      isotope effect  
Received:  13 September 2010      Revised:  04 January 2011      Accepted manuscript online: 
PACS:  31.15.vn (Electron correlation calculations for diatomic molecules)  
  31.50.Df (Potential energy surfaces for excited electronic states)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874064) and the Program for Science & Technology Innovation Talents in Universities of Henan Province of China (Grant No. 2008HASTIT008).

Cite this article: 

Zhang Xiao-Niu(张小妞), Shi De-Heng(施德恒), Sun Jin-Feng(孙金锋), and Zhu Zun-Lue(朱遵略) MRCI study of spectroscopic and molecular properties of X1$\varSigma$g+ and A1$\varPi$u electronic states of the C2 radical 2011 Chin. Phys. B 20 043105

[1] Wollaston W H 1802 Philos. Trans. R. Soc. London 92 365
[2] Kraemer W P and Roos B O 1987 Chem. Phys. 118 345
[3] Cecchi-Pestellini C and Dalgarno A 2002 Mon. Not. R. Astron. Soc. 331 L31
[4] Varandas A J C 2008 J. Chem. Phys. 129 234103
[5] Phillps J G 1948 Astrophys. J. 107 387
[6] Brewer L, Hicks W T and Krikorian O H 1962 J. Chem. Phys. 36 182
[7] Read S M, Vanderslice J T, Hicks W T and Krikorian O H 1962 J. Chem. Phys. 36 1366
[8] Ballik E A and Ramsay D A 1963 Astrophys. J. 137 84
[9] Marenin I R and Johnson H R 1970 J. Quantun Spectrosc. Radiat. Transfer 10 305
[10] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure, Vol. 4, Constants of Diatomic Molecules (New York: Van Nostrand-Reinhold)
[11] Amiot C and Verges J 1983 Astron. Astrophys. Suppl. Ser. 51 257
[12] Amiot C 1983 The Astrophysical Journal Supplement Series 52 329
[13] Davis S P, Abrams M C, Phillips J G and Rao M L P 1988 J. Opt. Soc. Am. B 5 2280
[14] Douay M, Nietmann R and Bernath P F 1988 J. Mol. Spectrosc. 131 250
[15] Martin M 1992 J. Phofochem. Photobiol. A: Chem. 66 263
[16] Chan M C, Yeung S H, Wong Y Y, Li Y, Chan W M and Yim K H 2004 Chem. Phys. Lett. 390 340
[17] Fougere P F and Nesbet N K 1966 J. Chem. Phys. 44 285
[18] Watts J D and Bartlett R J 1992 J. Chem. Phys. 96 6073
[19] Pradhan A D, Partridge H and Bauschlicher C W 1994 J. Chem. Phys. 101 3857
[20] Sordo J A 2001 J. Chem. Phys. 114 1974
[21] Purwanto W, Zhang S and Krakauer H 2009 J. Chem. Phys. 130 094107
[22] Müller T, Dallos M, Lischka H, Dubrovay Z and Szalay P G 2001 Theor. Chem. Acc. 105 227
[23] Langhoff S R, Sink M L, Pritchard R H, Kern C W, Strickler S J and Boyd M J 1977 J. Chem. Phys. 67 1051
[24] Verhaegen G, Richards W G and Moser C M 1967 J. Chem. Phys. 46 160
[25] Bauschlicher C W and Langhoff S R 1987 J. Chem. Phys. 87 2919
[26] Mclean A D, Liu B and Chandler G S 1992 J. Chem. Phys. 97 8459
[27] Valdes E A, Mora P D L, Castro M and Keller J 1997 Int. J. Quantum. Chem. 65 867
[28] Varandas A J C 2008 J. Chem. Phys. 129 234103
[29] Varandas A J C 2009 Chem. Phys. Lett. 471 315
[30] Kirby K and Liu B 1979 J. Chem. Phys. 70 893
[31] Dupuis M and Liu B 1980 J. Chem. Phys. 73 337
[32] Chabalowski C F, Peyerimhoff S D and Buenker R J 1983 Chem. Phys. 81 57
[33] Bruna P J and Wright J S 1992 J. Phys. Chem. 96 1630
[34] Peterson K A, Kendall R A and Dunning T H 1993 J. Chem. Phys. 99 9790
[35] Peterson K A 1995 J. Chem. Phys. 102 262
[36] Sorensen T E and England W B 1998 J. Chem. Phys. 108 5205
[37] Boggio-Pasqua M, Voronin A I, Halvick P and Rayez J C 2000 J. Mol. Struct. (Theochem) 531 159
[38] Feller D and Sordo J A 2000 J. Chem. Phys. 113 485
[39] Wang R, Zhu Z H and Yang C L 2001 J. Mol. Struct. (Theochem) 571 133
[40] Meissner H and Ema I 2001 J. Mol. Struct. (Theochem) 547 171
[41] Abrams M L and Sherrill C D 2003 J. Chem. Phys. 118 1604
[42] Kamiya M and Hirata S 2007 J. Chem. Phys. 126 134112
[43] Mahapatra U S, Chattopadhyay S and Chaudhuri R K 2008 J. Chem. Phys. 129 024108
[44] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[45] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[46] Mourik T V, Wilson A K and Dunning T H 1999 Mol. Phys. 96 529
[47] Zhang X N, Shi D H, Zhang J P, Zhu Z L and Sun J F 2010 Chin. Phys. B 19 053401
[48] Wang X Q, Yang C L, Su T and Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese)
[49] Zhang X N, Shi D H, Sun J F and Zhu Z L 2010 Chin. Phys. B 19 013501
[50] Shi D H, Zhang X N, Liu H, Zhu Z L and Sun J F 2010 Chin. Phys. B 19 103401
[51] Polák R and Fivser J 2003 Chem. Phys. 290 177
[52] Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A 2008 MOLPRO, version 2008.1, a package of ab initio programs
[53] Krogh J W, Lindh R, Malmqvist P AA, Roos B O, Veryazov V and Widmark P O 2009 User Manual, Molcas Version 7.4 (Lund: Lund University)
[54] González J L M Q and Thompson D 1997 Comput. Phys. 11 514
[55] Woon D E and Dunning T H 1995 J. Chem. Phys. 103 4572
[1] Spectroscopic study of B2Σ+–X1 2Π1/2 transition of electron electric dipole moment candidate PbF
Ben Chen(陈犇), Yi-Ni Chen(陈旖旎), Jia-Nuan Pan(潘佳煖), Jian-Ping Yin(印建平), and Hai-Ling Wang(汪海玲). Chin. Phys. B, 2022, 31(9): 093301.
[2] Theoretical study on the transition properties of AlF
Yun-Guang Zhang(张云光), Ling-Ling Ji(吉玲玲), Ru Cai(蔡茹),Cong-Ying Zhang(张聪颖), and Jian-Gang Xu(徐建刚). Chin. Phys. B, 2022, 31(5): 053101.
[3] Highly accurate theoretical study on spectroscopic properties of SH including spin-orbit coupling
Shu-Tao Zhao(赵书涛), Xin-Peng Liu(刘鑫鹏), Rui Li(李瑞), Hui-Jie Guo(国慧杰), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(7): 073104.
[4] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[5] Exploration and elaboration of photo-induced proton transfer dynamical mechanism for novel 2-[1,3]dithian-2-yl-6-(7aH-indol-2-yl)-phenol sensor
Lei Xu(许磊), Tian-Jie Zhang(张天杰), Qiao-Li Zhang(张巧丽), Da-Peng Yang(杨大鹏). Chin. Phys. B, 2020, 29(5): 053102.
[6] Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
Guang Yang(杨光)†, Kaifeng Chen(陈凯锋), Gang Wang(王岗), and Dapeng Yang(杨大鹏). Chin. Phys. B, 2020, 29(10): 103103.
[7] Isotope effect and Coriolis coupling effect forthe Li + H(D)Cl→LiCl + H(D) reaction
Hongsheng Zhai(翟红生), Guanglei Liang(梁广雷), Junxia Ding(丁俊霞), Yufang Liu(刘玉芳). Chin. Phys. B, 2019, 28(5): 053401.
[8] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[9] Exploring the effect of aggregation-induced emission on the excited state intramolecular proton transfer for a bis-imine derivative by quantum mechanics and our own n-layered integrated molecular orbital and molecular mechanics calculations
Huifang Zhao(赵慧芳), Chaofan Sun(孙朝范), Xiaochun Liu(刘晓春), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2019, 28(1): 018201.
[10] Diffusion Monte Carlo calculations on LaB molecule
Nagat Elkahwagy, Atif Ismail, S M A Maize, K R Mahmoud. Chin. Phys. B, 2018, 27(9): 093102.
[11] Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions
Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军). Chin. Phys. B, 2018, 27(12): 123101.
[12] Laser phase effect on asymmetric harmonic distribution in H2+
Li-Qiang Feng(冯立强), Wen-Liang Li(李文亮), Hui Liu(刘辉). Chin. Phys. B, 2017, 26(4): 044206.
[13] Potential energy curves, transition dipole moments, and radiative lifetimes of KBe molecule
Ming-Jie Wan(万明杰), Cheng-Guo Jin(金成国), You Yu(虞游), Duo-Hui Huang(黄多辉), Ju-Xiang Shao(邵菊香). Chin. Phys. B, 2017, 26(3): 033101.
[14] MRCI+Q study of the low-lying electronic states of CdF including spin—orbit coupling
Shu-Tao Zhao(赵书涛), Bing Yan(闫冰), Rui Li(李瑞), Shan Wu(武山), Qiu-Ling Wang(王秋玲). Chin. Phys. B, 2017, 26(2): 023105.
[15] Absorption spectra and isotope shifts of the (2, 0), (3, 1), and (8, 5) bands of the A2Πu–X2g+ system of 15N2+ in near infrared
Jia Ye(叶佳), Hailing Wang(汪海玲), Lunhua Deng(邓伦华). Chin. Phys. B, 2017, 26(10): 103102.
No Suggested Reading articles found!