Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 010508    DOI: 10.1088/1674-1056/20/1/010508
GENERAL Prev   Next  

Projective synchronization of a complex network with different fractional order chaos nodes

Wang Ming-Jun(王明军)a)b), Wang Xing-Yuan(王兴元)a), and Niu Yu-Jun(牛玉军)a)
a School of Electronic and Information Engineering, Dalian University of Technology, Dalian 116024, China; b School of Information Engineering, Dalian University, Dalian 116622, China
Abstract  Based on the stability theory of the linear fractional order system, projective synchronization of a complex network is studied in the paper, and the coupling functions of the connected nodes are identified. With this method, the projective synchronization of the network with different fractional order chaos nodes can be achieved, besides, the number of the nodes does not affect the stability of the whole network. In the numerical simulations, the chaotic fractional order Lü system, Liu system and Coullet system are chosen as examples to show the effectiveness of the scheme.
Keywords:  fractional order      different-structure      complex network      projective synchronization  
Received:  20 May 2010      Revised:  10 June 2010      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation of China (Nos. 60573172 and 60973152), the Superior University Doctor Subject Special Scientific Research Foundation of China (Grant No. 20070141014), and the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165).

Cite this article: 

Wang Ming-Jun(王明军), Wang Xing-Yuan(王兴元), and Niu Yu-Jun(牛玉军) Projective synchronization of a complex network with different fractional order chaos nodes 2011 Chin. Phys. B 20 010508

[1] Erd"os P and R'enyi A 1960 Publ. Math. Inst. Hungar. Acad. Sci. 5 17
[2] Watts D J and Strogatz S H 1998 Nature 393 440
[3] Barab'asi A L and Albert R 1999 Science 286 509
[4] Atay F M, Jost J and Wende A 2004 Phys. Rev. Lett. 92 144101
[5] Hung Y C, Huang Y T, Ho M C and Hu C K 2008 Phys. Rev. E 77 16202
[6] Qin J and Yu H J 2007 Acta Phys. Sin. 56 6828 (in Chinese)
[7] L"u J H, Yu X H and Chen G R 2004 Physica A 334 281
[8] Gao Y, Li L X, Peng H P, Yang Y X and Zhang X H 2008 Acta Phys. Sin. 57 2081 (in Chinese)
[9] Pei W D, Chen Z Q and Yuan Z Z 2008 Chin. Phys. B 17 373
[10] Chen G, Zhou J and Liu Z 2004 Int. J. Bifur. Chaos 14 2229
[11] Zeng Z and Wang J 2006 IEEE Trans. Circuits System I 53 944
[12] Cao J, Li P and Wang W 2006 Phys. Lett. A 353 318
[13] Podlubny I 1999 Fractional Differential Equations (New York: Academic Press)
[14] Hilfer R 2001 Applications of Fractional Calculus in Physics (New Jersey: World Scientific)
[15] Caputo M 1967 Goephys. J. R. Atr. Soc. 13 529
[16] Matignon D 1996 Comp. Eng. in Sys. Appl. 2 963
[17] L"u J, Chen G, Cheng D and uCelikovsk`y S 2002 Int. J. Bifur. Chaos 12 2917
[18] Liu C X, Liu T, Liu L and Liu K 2004 Chaos, Solitons and Fractals 22 1031
[19] Wu C W and Chua L O 1996 Int. J. Bifur. Chaos 6 801
[20] Wang X Y and Wang M J 2007 Chaos 17 033106
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] An extended improved global structure model for influential node identification in complex networks
Jing-Cheng Zhu(朱敬成) and Lun-Wen Wang(王伦文). Chin. Phys. B, 2022, 31(6): 068904.
[5] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[6] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[9] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[10] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
[11] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[12] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[13] Dynamical robustness of networks based on betweenness against multi-node attack
Zi-Wei Yuan(袁紫薇), Chang-Chun Lv(吕长春), Shu-Bin Si(司书宾), and Dong-Li Duan(段东立). Chin. Phys. B, 2021, 30(5): 050501.
[14] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[15] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
No Suggested Reading articles found!