Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 084205    DOI: 10.1088/1674-1056/19/8/084205
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Degree of fourth-order coherence by double Hanbury Brown–Twiss detections

Zhang Yu-Chi(张玉驰)a), Li Yuan(李园) a)b), Guo Yan-Qiang(郭龑强)a), Li Gang(李刚)a), Wang Jun-Min(王军民)a), and Zhang Tian-Cai(张天才)a)†
aState Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China;  State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  Photon quantum statistics of light can be shown by the high-order coherence. The fourth-order coherences of various quantum states including Fock states, coherent states, thermal states and squeezed vacuum states are investigated based on a double Hanbury Brown–Twiss (HBT) scheme. The analytical results are obtained by taking the overall efficiency and background into account.
Keywords:  fourth-order coherence      quantum state      single-photon counting  
Received:  27 October 2009      Revised:  20 January 2010      Accepted manuscript online: 
PACS:  42.50.Ar  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10974125 60821004, 60808006, 60978017 and 60578018), and the State Basic Key Research Program of China (Grant No. 2006CB921102).

Cite this article: 

Zhang Yu-Chi(张玉驰), Li Yuan(李园), Guo Yan-Qiang(郭龑强), Li Gang(李刚), Wang Jun-Min(王军民), and Zhang Tian-Cai(张天才) Degree of fourth-order coherence by double Hanbury Brown–Twiss detections 2010 Chin. Phys. B 19 084205

[1] Hanbury-Brown R and Twiss R Q 1956 Nature 178 1046
[2] Glauber R J 1965 Quantum Optics and Electronics (New York: Gordon and Breach) p. 63
[3] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[4] McKeever J, Boca A, Boozer A D, Buck J R and Kimble H J 2003 Nature 425 268
[5] Ourjoumtsev A, Brouri R T, Laurat J and Grangier P 2006 Science 312 83
[6] Wakui K, Takahashi H, Furusawa A and Sasaki M 2007 Opt. Express 15 3568
[7] Lu C Y, Zhou X Q, Guhne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T and Pan J W 2007 Nature Phys. 3 91
[8] Glauber R J 1963 Phys. Rev. 130 2529
[9] Titulaer U M and Glauber R J 1965 Phys. Rev. 140 B676
[10] Zhang J X, He L X, Zhang T C, Xie C D and Peng K C 1999 Acta Phys. Sin. 48 1230 (in Chinese)
[11] Campos, Richard A, Saleh, Bahaa E A, Teich and Malvin C 1990 Phys. Rev. A 42 4127
[12] Rarity J G and Tapster P R 1989 J. Opt. Soc. Am. B 6 1221
[13] Ou Z Y and Mandel L 1988 Phys. Rev. Lett. 61 50
[14] Wang R P and Zhang H R 2008 Chin. Phys. B 17 194
[15] Liu Q, Chen X H, Luo K H, Wu W and Wu L A 2009 Phys. Rev. A 79 053844
[16] Li G, Zhang T C, Li Y and Wang J M 2005 Phys. Rev. A 71 023807
[17] Li Y, Li G, Zhang Y C, Wang X Y, Wang J M and Zhang T C 2006 Acta Phys. Sin. 56 5779 (in Chinese)
[18] Rosenberg D, Lita A E, Miller A J and Nam S W 2005 Phys. Rev. A 71 061803(R)
[19] Li Y, Zhang Y C, Zhang P F, Guo Y Q, Li G, Wang J M and Zhang T C 2009 Chin. Phys. Lett. 26 074205
[20] Li Y, Li G, Zhang Y C, Wang X Y, Zhang J, Wang J M and Zhang T C 2007 Phys. Rev. A 76 013829
[21] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press) p. 623
[22] Abate J A, Kimble H J and Mandel L 1976 Phys. Rev. A 14 788
[23] Wildfeuer C F, Pearlman A J, Chen J, Fan J Y, Migdall A and Dowling J P 2009 Phys. Rev. A 80 043822
[24] Brown K R, Dani K M, Stamper-Kurn D M and Whaley K B 2003 Phys. Rev. A 67 043818
[25] Varcoe B T H, Brattke S and Walther H 2004 New J. Phys. 6 97
[26] Mahran M H and Satyanarayana M V 1986 Phys. Rev. A 34 640
[27] Zhang T C, Zhang J X, Xie C D and Pend K C 1998 Acta Phys. Sin. (Overseas Edition) 7 340
[1] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
[2] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[3] Digraph states and their neural network representations
Ying Yang(杨莹) and Huaixin Cao(曹怀信). Chin. Phys. B, 2022, 31(6): 060303.
[4] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[5] A rational quantum state sharing protocol with semi-off-line dealer
Hua-Li Zhang(张花丽), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Yu Yang(杨榆), and Xiu-Bo Chen(陈秀波). Chin. Phys. B, 2022, 31(5): 050309.
[6] Increasing the efficiency of post-selection in direct measurement of the quantum wave function
Yong-Li Wen(温永立), Shanchao Zhang(张善超), Hui Yan(颜辉), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2022, 31(3): 034206.
[7] Change-over switch for quantum states transfer with topological channels in a circuit-QED lattice
Liu-Yong Cheng(程留永), Li-Na Zheng(郑黎娜), Ruixiang Wu(吴瑞祥), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(2): 020305.
[8] Topological phases and type-II edge state in two-leg-coupled Su-Schrieffer-Heeger chains
Tianqi Luo(罗天琦), Xin Guan(关欣), Jingtao Fan(樊景涛), Gang Chen(陈刚), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2022, 31(1): 014208.
[9] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[10] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[11] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[12] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[13] Statistics of states generated by quantum-scissors device
Ming-Hao Wang(王明浩), Guo-An Yan(闫国安). Chin. Phys. B, 2019, 28(3): 030302.
[14] Solid-state quantum computation station
Fanming Qu(屈凡明), Zhongqing Ji(姬忠庆), Ye Tian(田野), Shiping Zhao(赵士平). Chin. Phys. B, 2018, 27(7): 070301.
[15] Separability criteria based on Heisenberg-Weyl representation of density matrices
Jingmei Chang(常景美), Meiyu Cui(崔美钰), Tinggui Zhang(张廷桂), Shao-Ming Fei(费少明). Chin. Phys. B, 2018, 27(3): 030302.
No Suggested Reading articles found!