Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080303    DOI: 10.1088/1674-1056/19/8/080303
GENERAL Prev   Next  

New application to Riccati equation

Taogetusang(套格图桑)a), Sirendaoerji(斯仁道尔吉)a), and Li Shu-Min(李姝敏)b)
a College of Mathematical Science, Inner Mongolia Normal University, Huhhot 010022, China; b College of Mathematical Science, Bao Tou Teachers' College, Bao Tou 014030, China
Abstract  To seek new infinite sequence of exact solutions to nonlinear evolution equations, this paper gives the formula of nonlinear superposition of the solutions and Bäcklund transformation of Riccati equation. Based on the tanh-function expansion method and homogenous balance method, new infinite sequence of exact solutions to Zakharov–Kuznetsov equation, Karamoto–Sivashinsky equation and the set of (2+1)-dimensional asymmetric Nizhnik–Novikov–Veselov equations are obtained with the aid of symbolic computation system Mathematica. The method is of significance to construct infinite sequence exact solutions to other nonlinear evolution equations.
Keywords:  Riccati equation      formula of nonlinear superposition      nonlinear evolution equation      exact solution  
Received:  19 September 2009      Revised:  14 December 2009      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  02.30.Hq (Ordinary differential equations)  
  02.30.Mv (Approximations and expansions)  
  02.30.Sa (Functional analysis)  
  02.70.Wz (Symbolic computation (computer algebra))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10461006), the Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region, China (Grant No. NJZZ07031), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 200408020103) and the Natural Science Research Program of Inner Mongolia Normal University, China (Grant No. QN005023).

Cite this article: 

Taogetusang(套格图桑), Sirendaoerji(斯仁道尔吉), and Li Shu-Min(李姝敏) New application to Riccati equation 2010 Chin. Phys. B 19 080303

[1] Wang M L 1995 wxPhys. Lett. A199 169
[2] Liu S K, Fu Z T, Liu S D and Zhao Q 2002 wxActa Phys. Sin.51 1923 (in Chinese)
[3] Fan E G 2000 wxPhys. Lett. A 277 212
[4] Chen Y, Li B and Zhang H Q 2003 wxChin. Phys.12 940
[5] Chen Y, Yan Z Y, Li B and Zhang H Q 2003 wxChin. Phys.12 1
[6] Chen Y, Li B and Zhang H Q 2003 wxCommun. Theor. Phys.(Beijing, China) 40 137
[7] Li D S and Zhang H Q 2003 wxCommun. Theor. Phys.(Beijing, China) 40 143
[8] Zhen X D, Chen Y, Li B and Zhang H Q 2003 wxCommun. Theor. Phys.(Beijing, China) 39 647
[9] Lü Z S and Zhang H Q 2003 wxCommun. Theor. Phys.(Beijing, China) 39 405
[10] Bai C L 2003 wxCommun. Theor. Phys.(Beijing, China) 40 147
[11] Li D S and Zhang H Q 2004 wxChin. Phys.13 984
[12] Xie F D and Gao X S 2004 wxCommun. Theor. Phys.(Beijing, China) 41 353
[13] Chen H T and Zhang H Q 2004 wxCommun. Theor. Phys.(Beijing, China) 42 497
[14] Xie F D, Chen J and Lü Z S 2005 wxCommun. Theor. Phys.(Beijing, China) 43 585
[15] Xie F D and Yuan Z T 2005 wxCommun. Theor. Phys.(Beijing, China) 43 39
[16] Yong X L and Zhang H Q 2005 wxActa Phys. Sin.54 2514 (in Chinese)
[17] Chen Y and Li B 2004 wxCommun. Theor. Phys.(Beijing, China) 41 1
[18] Wang Z and Zhang H Q 2006 wxChin. Phys.15 2210
[19] Lu D C, Hong B J and Tian L X 2006 wxActa Phys. Sin.55 5617 (in Chinese)
[20] Wang Z, Li D S, Lu H F and Zhang H Q 2005 wxChin. Phys.14 2158
[21] Lu B and Zhang H Q 2008 wxChin. Phys. B17 3974
[22] Li D S and Zhang H Q 2004 wxChin. Phys.13 1377
[23] Zhao X Q, Zhi H Y and Zhang H Q 2006 wxChin. Phys.15 2202
[24] Zhang J L, Ren D F, Wang M L, Wang Y M and Fang Z D 2003 wxChin. Phys.12 825
[25] Pan J T and Gong L X 2007 wxActa Phys. Sin.56 5585 (in Chinese)
[26] Zhang L, Zhang L F and Li C Y 2008 wxChin. Phys. B17 403
[27] Zhu J M, Zheng C L and Ma Z Y 2004 wxChin. Phys.13 2008
[28] Taogetusang and Sirendaoerji 2006 wxChin. Phys.15 2810
[29] Taogetusang and Sirendaoerji 2008 wxActa Phys. Sin.57 1295 (in Chinese)
[30] Wu H Y, Zhang L, Yan Y K and Zhou X T 2008 wxActa Phys. Sin.57 3313 (in Chinese)
[31] Sirendaoerji and Sun J 2003 wxPhys. Lett. A309 387
[32] Liu C S 2005 wxActa Phys. Sin.54 4506 (in Chinese)
[33] He F, Guo Q B and Liu L 2007 wxActa Phys. Sin.56 4326 (in Chinese)
[34] Zeng X and Zhang H Q 2005 wxActa Phys. Sin.54 504 (in Chinese)
[35] Zhi H Y, Wang Q and Zhang H Q 2005 wxActa Phys. Sin.54 1002 (in Chinese)
[36] Pan J T and Gong L X 2008 wxChin. Phys. B17 399
[37] Jiao X Y, Wang J H and Zhang H Q 2005 wxCommun. Theor. Phys.(Beijing, China) 44 407
[38] Gao L, Xu W, Tang Y N and Shen J W 2007 wxActa Phys. Sin.56 1860 (in Chinese)
[39] Taogetusang and Sirendaoerji 2007 wxActa Phys. Sin.56 627 (in Chinese)
[40] Taogetusang and Sirendaoerji 2006 wxActa Phys. Sin.55 6215 (in Chinese)
[41] Ma S H, Wu X H, Fang J P and Zheng C L 2008 wxActa Phys. Sin.57 11 (in Chinese)
[42] Chen Y and Wang Q 2004 wxChin. Phys.13 1796
[1] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[2] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[3] Exact solution of the (1+2)-dimensional generalized Kemmer oscillator in the cosmic string background with the magnetic field
Yi Yang(杨毅), Shao-Hong Cai(蔡绍洪), Zheng-Wen Long(隆正文), Hao Chen(陈浩), Chao-Yun Long(龙超云). Chin. Phys. B, 2020, 29(7): 070302.
[4] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[5] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[6] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[7] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[8] Integrability classification and exact solutions to generalized variable-coefficient nonlinear evolution equation
Han-Ze Liu(刘汉泽), Li-Xiang Zhang(张丽香). Chin. Phys. B, 2018, 27(4): 040202.
[9] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[10] A more general form of lump solution, lumpoff, and instanton/rogue wave solutions of a reduced (3+1)-dimensional nonlinear evolution equation
Panfeng Zheng(郑攀峰), Man Jia(贾曼). Chin. Phys. B, 2018, 27(12): 120201.
[11] Recursion-transform method and potential formulae of the m×n cobweb and fan networks
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2017, 26(9): 090503.
[12] Multiple exp-function method for soliton solutions ofnonlinear evolution equations
Yakup Yıldırım, Emrullah Yašar. Chin. Phys. B, 2017, 26(7): 070201.
[13] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[14] Two-point resistance of an m×n resistor network with an arbitrary boundary and its application in RLC network
Zhi-Zhong Tan(谭志中). Chin. Phys. B, 2016, 25(5): 050504.
[15] Application of asymptotic iteration method to a deformed well problem
Hakan Ciftci, H F Kisoglu. Chin. Phys. B, 2016, 25(3): 030201.
No Suggested Reading articles found!