Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 070201    DOI: 10.1088/1674-1056/26/7/070201
GENERAL   Next  

Multiple exp-function method for soliton solutions ofnonlinear evolution equations

Yakup Y?ld?r?m, Emrullah Yašar
Department of Mathematics, Faculty of Arts and Sciences, Uludag University, 16059, Bursa, Turkey
Abstract  

We applied the multiple exp-function scheme to the (2+1)-dimensional Sawada–Kotera (SK) equation and (3+1)-dimensional nonlinear evolution equation and analytic particular solutions have been deduced. The analytic particular solutions contain one-soliton, two-soliton, and three-soliton type solutions. With the assistance of Maple, we demonstrated the efficiency and advantages of the procedure that generalizes Hirota's perturbation scheme. The obtained solutions can be used as a benchmark for numerical solutions and describe the physical phenomena behind the model.

Keywords:  (2+1)-dimensional Sawada–      Kotera (SK) equation      (3+1)-dimensional nonlinear evolution equation (NLEE)      multiple exp-function method      multiple wave solutions  
Received:  06 March 2017      Revised:  23 March 2017      Accepted manuscript online: 
PACS:  02.30.Gp (Special functions)  
  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
Corresponding Authors:  Emrullah Yašar     E-mail:  eyasar@uludag.edu.tr

Cite this article: 

Yakup Yıldırım, Emrullah Yašar Multiple exp-function method for soliton solutions ofnonlinear evolution equations 2017 Chin. Phys. B 26 070201

[1] Bekir A, Güner Ö and Bilgil H 2015 Optik 126 2518
[2] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge:Cambridge University Press)
[3] Vakhnenko V O, Parkes E J and Morrison A J 2003 Chaos Soliton. Fract. 17 683
[4] Hirota R 1976 Direct Method of Finding Exact Solutions of Nonlinear Evolution Equations. In Bäcklund Transformations, the Inverse Scattering Method, Solitons, and Their Applications (Berlin:Springer)
[5] Malfliet W and Hereman W 1996 Phys. Scr. 54 563
[6] Wazwaz A M 2004 Appl. Math. Comput. 154 713
[7] Ma W X and You Y 2005 Trans. Am. Math. Soc. 357 1753
[8] He J H and Wu X H 2006 Chaos Soliton. Fract. 30 700
[9] Ma W X, Huang T and Zhang Y 2010 Phys. Scr. 82 065003
[10] Adem A R 2016 Int. J. Mod. Phys. B. 30 1640001
[11] Zayed E M E and Al-Nowehy A G 2015 Z. Naturforsch. A 70 775
[12] Miao Q, Wang Y, Chen Y and Yang Y 2014 Comput. Phys. Commun. 185 357
[13] Lü X, Geng T, Zhang C, Zhu H W, Meng X H and Tian B 2009 Int. J. Mod. Phys. B 23 5003
[14] Wu J P 2011 Chin. Phys. Lett. 28 050501
[15] Wu J P 2008 Chin. Phys. Lett. 25 4192
[16] Wu J P 2010 Commun. Theor. Phys. 53 812
[17] Ma W X, Huang T and Zhang Y 2010 Phys. Scr. 82 065003
[18] Ma W X and Zhu Z 2012 Appl. Math. Comput. 218 11871
[19] Adem A R 2016 Comput. Math. Appl. 71 1248
[20] Wazwaz A M 2011 Math. Meth. Appl. Sci. 34 1580
[21] Geng X and Ma Y 2007 Phys. Lett. A 369 285
[1] Resonant multiple wave solutions to some integrable soliton equations
Jian-Gen Liu(刘建根), Xiao-Jun Yang(杨小军), Yi-Ying Feng(冯忆颖). Chin. Phys. B, 2019, 28(11): 110202.
No Suggested Reading articles found!