Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 056101    DOI: 10.1088/1674-1056/19/5/056101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Influence of reducing anneal on the ferromagnetism in single crystalline Co-doped ZnO thin films

Lu Zhong-Lin(路忠林)a)b), Zou Wen-Qin(邹文琴)c), Xu Ming-Xiang (徐明祥)a), and Zhang Feng-Ming(张凤鸣)c)
a Department of Physics, Southeast University, Nanjing 210096, China; b Physics Department and Institute of Innovations and Advanced Studies (IIAS), National Cheng Kung University, Tainan 701, China; c Jiangsu Provincial Laboratory for Nanotechnology, National Laboratory of Solid State Microstructure, and Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on $a$-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagnetism at room temperature, while they become good conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour. The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase. Compared with weak ferromagnetism (0.16 $\mu _{\rm B}$/Co$^{2 + })$ in the Zn$_{0.95}$Co$_{0.05}$O single crystalline film with reducing annealing in the absence of Zn vapour, the films annealed in the reducing atmosphere with Zn vapour are found to have much stronger ferromagnetism (0.65 $\mu _{\rm B}$/Co$^{2 + })$ at room temperature. This experimental studies clearly indicate that Zn interstitials are more effective than oxygen vacancies to activate the high-temperature ferromagnetism in Co-doped ZnO films, and the corresponding ferromagnetic mechanism is discussed.
Keywords:  Co-doped ZnO      diluted magnetic semiconductors      x-ray absorption fine structure      single crystalline thin films  
Received:  29 August 2009      Revised:  23 September 2009      Accepted manuscript online: 
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  75.50.Pp (Magnetic semiconductors)  
  78.70.Dm (X-ray absorption spectra)  
  68.55.A- (Nucleation and growth)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
  73.61.Ga (II-VI semiconductors)  
Fund: Project partially supported by National Science Foundation of China (Grant No.~10804017), National Science Foundation of Jiangsu Province of China (Grant No.~BK2007118), Research Fund for the Doctoral Program of Higher Education of China (Grant No.~20070286037), Cyanine-Project Foundation of Jiangsu Province of China (Grant No.~1107020060), Foundation for Climax Talents Plan in Six-Big Fields of Jiangsu Province of China (Grant No.~1107020070) and New Century Excellent Talents in University (NCET-05-0452).

Cite this article: 

Lu Zhong-Lin(路忠林), Zou Wen-Qin(邹文琴), Xu Ming-Xiang (徐明祥), and Zhang Feng-Ming(张凤鸣) Influence of reducing anneal on the ferromagnetism in single crystalline Co-doped ZnO thin films 2010 Chin. Phys. B 19 056101

[1] Cho S, Ma J, Kim Y, Sun Y, Wong G K L and Ketterson J B 1999 Appl. Phys. Lett. 75 2761
[2] Cao H, Xu J Y, Seeling E W and Chang R P H 2000 Phys. Rev. Lett. 84 5584
[3] Tsukazaki A, Ohotmo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu Shigefusa F, Fuke S, Segawa Y, Ohno H, Koinuma H and Kawasaki M 2005 Nat. Mater. 4 42
[4] Xu H Y, Liu Y C, Mu R, Shao C L, Lu Y M, Shen D Z and Fan X W 2005 Appl. Phys. Lett. 86 123107
[5] \"{Ozg\"{Ur\"{U, Alivov Ya I, Liu C, Teke A, Reshchikov M A, Do\v{gan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
[6] Janisch R, Gopal P and Spaldin N A 2005 J. Phys. Condens. Matter. 17 R657
[7] Dietl T, Ohno H, Matsukura F, Cubert J and Ferrand D 2000 Science 287 1019
[8] Wang Q, Sun Q, Jena P and Kawazoe Y 2004 Phys. Rev. B 70 052408
[9] Sato K and Katyama-Yoshida H 2002 Semicon. Sci. Technol. 17 367
[10] Peng X D, Zhu T and Wang F W 2009 Acta Phys. Sin. 58 3274 (in Chinese)
[11] Yan G Q, Xie K X, Mo Z R, Lu Z L, Zou W Q, Wang S, Yue F J, Wu D, Zhang F M and Du Y W 2009 Acta Phys. Sin. 58 1237 (in Chinese)
[12] Sati P, Deparis C, Morhain C, Sch\"{afer S and Stepanov A 2007 Phys. Rev. Lett. 98 137204
[13] Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nat. Mater. 4 173
[14] Liu X C, Shi E W, Chen Z Z, Zhang H W, Zhang T and Song L X 2007 Chin. Phys. 16 1770
[15] Schwartz Dana A and Gamelin Daniel R 2004 Adv. Mater. 16 2115
[16] Hsu H S, Huang J C A, Huang Y H, Liao Y F, Lin M Z, Lee C H, Lee J F, Chen S F, Lai L Y and Liu C P 2006 Appl. Phys. Lett. 88 242507
[17] Cheng X W, Li X, Gao Y L, Yu Z, Long X and Liu Y 2009 Acta Phys. Sin. 58 2018 (in Chinese)
[18] Liu X C, Chen Z Z, Shi E W, Yan C F, Huang W, Song L X, Zhou K J, Cui M Q, He B and Wei S Q 2009 Acta Phys. Sin. 58 0498 (in Chinese)
[19] Peng X D, Zhu T, Wang F W, Huang W G and Cheng Z H 2009 Chin. Phys. B 18 2576
[20] Liu X C, Zhang H W, Zhang T, Chen B Y, Chen Z Z, Song L X and Shi E W 2008 Chin. Phys. B 17 1371
[21] Schmidt-Mende L and MacManus-Driscoll J L 2007 Mater. Today 10 40
[22] Lu Z L, Hsu H S, Tzeng Y H and Huang J C A 2009 Appl. Phys. Lett. 94 152507
[23] Fons P, Iwata K, Yamada A, Matsubara, Niki S, Nakahara K, Tanabe T and Takasu H 2000 Appl. Phys. Lett. 77 1801
[24] Cao Q, Deng J X, Liu G L, Chen Y X, Yan S S and Mei L M 2007 Chin. Phys. Lett. 24 2951
[25] Pan F, Song C, Liu X J, Yang Y C and Zeng F 2008 Mater. Sci. Eng. R 62 1
[26] Heald S M, Kaspar T, Droubay T, Shutthanandan V and Chambers S 2009 Phys. Rev. B 79 075202
[27] Yin S, Xu M X, Yang L, Liu J F, R\"{osner H, Hahn H, Gleiter H, Schild D, Doyle S, Liu T and Hu T D 2006 Phys. Rev. B 73 224408
[28] MacManus-Driscoll J L, Khare N, Liu Y L and Vickers M E 2007 Adv. Mater. 19 2925
[29] Khare N, Kappers M J, Wei M, Blamire M G and MacManus-Driscoll J L 2006 Adv. Mater. 18 1449
[30] Kittilstved K R, Schwartz D A, Tuan A C, Heald S M, Chambers S A and Gamelin D R 2006 Phys. Rev. Lett. 97 037203
[31] Potashnik S J, Ku K C, Mahendiran R, Chun S H, Wang R F, Samarth N and Schiffer P 2002 Phys. Rev. B 66 12408
[1] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[2] Low temperature Pmmm and C2/m phases in Sr2CuO3+δ high temperature superconductor
Hai-Bo Wang(王海波), Zhen-Lin Luo(罗震林), Yuan-Jun Yang(杨远俊), Qing-Qing Liu(刘清青), Si-Xia Hu(胡思侠), Meng-Meng Yang(杨蒙蒙), Chang-Qing Jin(靳常青), Chen Gao(高琛). Chin. Phys. B, 2019, 28(5): 056103.
[3] Manipulating coupling state and magnetism of Mn-doped ZnO nanocrystals by changing the coordination environment of Mn via hydrogen annealing
Yan Cheng(程岩), Wen-Xian Li(李文献), Wei-Chang Hao(郝维昌), Huai-Zhe Xu(许怀哲), Zhong-Fei Xu(徐忠菲), Li-Rong Zheng(郑离荣), Jing Zhang(张静),Shi-Xue Dou(窦士学), Tian-Min Wang(王天民). Chin. Phys. B, 2016, 25(1): 017301.
[4] Room-temperature ferromagnetism induced by Cu vacancies in Cux(Cu2O)1-x granular films
Xie Xin-Jian (解新建), Li Hao-Bo (李好博), Wang Wei-Chao (王卫超), Lu Feng (卢峰), Yu Hong-Yun (于红云), Wang Wei-Hua (王维华), Cheng Ya-Hui (程雅慧), Zheng Rong-Kun (郑荣坤), Liu Hui (刘晖). Chin. Phys. B, 2015, 24(9): 097504.
[5] Structure and chemical valence study of Srn+1RunO3n+1 (n=1, 2, ∞) series
Zheng Long (郑龙), Zhu Xiao-Qin (朱小芹), Sui Yong-Xing (眭永兴), Xue Jian-Zhong (薛建忠), Liu Bo (刘波), Pei Ming-Xu (裴明旭). Chin. Phys. B, 2015, 24(5): 056101.
[6] Defect-induced ferromagnetism in rutile TiO2:A first-principles study
Zhang Yong (张勇), Qi Yue-Ying (祁月盈), Hu Ya-Hua (胡亚华), Liang Pei (梁培). Chin. Phys. B, 2013, 22(12): 127101.
[7] The variation of Mn-dopant distribution state with x and its effect on the magnetic coupling mechanism in Zn1-xMnxO nanocrystals
Cheng Yan (程岩), Hao Wei-Chang (郝维昌), Li Wen-Xian (李文献), Xu Huai-Zhe (许怀哲), Chen Rui (陈蕊), Dou Shi-Xue (窦士学). Chin. Phys. B, 2013, 22(10): 107501.
[8] A theoretical study of the oxygen K-edge near-edge X-ray absorption ne structure of N2O/Ir(110)
Wu Tai-Quan(吴太权), Zhu Ping(朱萍), Wang Xin-Yan(王新燕), and Luo Hong-Lei (罗宏雷) . Chin. Phys. B, 2012, 21(7): 076801.
[9] A first-principles study of the magnetic properties in boron-doped ZnO
Xu Xiao-Guang(徐晓光), Yang Hai-Ling(杨海龄), Wu Yong(吴勇), Zhang De-Lin(张德林), and Jiang Yong(姜勇) . Chin. Phys. B, 2012, 21(4): 047504.
[10] Infrared emissivities of Mn, Co co-doped ZnO powders
Yao Yin-Hua (姚银华), Cao Quan-Xi (曹全喜). Chin. Phys. B, 2012, 21(12): 124205.
[11] Electronic and magnetic structures of V-doped zinc blende Zn1-xVxNyO1-y and Zn1-xVxPyO1-y
N. Mamouni, M. Belaiche, A. Benyoussef, A. El Kenz, H. Ez-Zahraouy, M. Loulidi, E. H. Saidi and E. K. Hlil . Chin. Phys. B, 2011, 20(8): 087504.
[12] Room-temperature anomalous Hall effect and magnetroresistance in (Ga, Co)-codoped ZnO diluted magnetic semiconductor films
Liu Xue-Chao(刘学超), Chen Zhi-Zhan(陈之战), Shi Er-Wei(施尔畏), Liao Da-Qian(廖达前), and Zhou Ke-Jin(周克谨). Chin. Phys. B, 2011, 20(3): 037501.
[13] Effect of oxygen vacancy defect on the magnetic properties of Co-doped ZnO
Weng Zhen-Zhen(翁臻臻), Zhang Jian-Min(张健敏), Huang Zhi-Gao(黄志高), and Lin Wen-Xiong(林文雄) . Chin. Phys. B, 2011, 20(2): 027103.
[14] Paramagnetism in Cu-doped ZnO
Xu Qing-Yu(徐庆宇), Zheng Xiao-Hong(郑晓红), and Gong You-Pin(龚佑品). Chin. Phys. B, 2010, 19(7): 077501.
[15] Electron spin resonance investigation of the substitution of Fe3+ for Ti4+ ions in rutile TiO2 single crystal
Li Guo-Ke(李国科), Zhang Xiang-Qun(张向群), Wu Hong-Ye(吴鸿业), Huang Wan-Guo(黄万国), Jin Jin-Ling(靳金玲), Sun Young(孙阳), and Cheng Zhao-Hua(成昭华). Chin. Phys. B, 2009, 18(8): 3551-3554.
No Suggested Reading articles found!