Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 050516    DOI: 10.1088/1674-1056/19/5/050516
GENERAL Prev   Next  

Intermittencies in complex Ginzburg-Landau equation by varying system size

Li Hai-Hong(李海红)a), Xiao Jing-Hua(肖井华) a)b), Hu Gang(胡岗)b)c), and Hu Bambi(胡斑比)b)d)
a School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; b Centre of Nonlinear Studies and Department of Physics, Hong Kong Baptist University, Hong Kong, China; c Department of Physics, University of Houston, Houston, TX 77204, USA; d Department of Physics, Beijing Normal University, Beijing 100875, China
Abstract  Dynamical behaviour of the one-dimensional complex Ginzburg--Landau equation (CGLE) with finite system size $L$ is investigated, based on numerical simulations. By varying the system size and keeping other system parameters in the defect turbulence region (defect turbulence in large $L$ limit), a number of intermittencies new for the CGLE system are observed in the processes of pattern formations and transitions while the system dynamics varies from a homogeneous periodic oscillation to strong defect turbulence.
Keywords:  Ginzburg--Landau equation      chaos      turbulence  
Received:  06 July 2009      Revised:  26 October 2009      Accepted manuscript online: 
PACS:  05.45.Jn (High-dimensional chaos)  
  02.60.Cb (Numerical simulation; solution of equations)  
Fund: Project supported by grants from the Hong Kong Research Grants Council (RGC) and Hong Kong Baptist University Faculty Research Grants (FRG), and partially supported by the National Natural Science Foundation of China (Grant No.~10575016) and Nonlinear Science Project of China.

Cite this article: 

Li Hai-Hong(李海红), Xiao Jing-Hua(肖井华), Hu Gang(胡岗), and Hu Bambi(胡斑比) Intermittencies in complex Ginzburg-Landau equation by varying system size 2010 Chin. Phys. B 19 050516

[1] Cross M C and Hohenburg P C 1993 Rev. Mod. Phys. 65 851
[2] Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (Tokyo: Springer)
[2a] Kuramoto Y and Koga S 1981 Prog. Theor. Phys. Suppl. 66 1081
[3] Cross M and Hohenburg P 1994 Science 263 1569
[3a] Ouyang Q and Flesselles J M 1996 Nature 379 143
[3b] Egolf D and Greenside H 1994 Nature (London) 369 129
[3c] Qu Z L, Weiss J N and Garfinkel A 2000 Phys. Rev. E 61 727
[3d] Sun G Q, Jin Z, Liu Q X and Li L 2008 Chin. Phys. B 17 3936
[3e] Ma J, Yi M, Li B W and Li Y L 2008 Chin. Phys. B 17 2438
[4] B ohr T, Jensen M H, Paladin G and Vulpiani A 1998 Dynamical Systems Approach to Turbulence (Cambridge, England: Cambridge University Press)
[5] Coullet P, Gil L and Lega J 1989 Phys. Rev. Lett. 62 1619
[5a] hraiman B 1992 Physica D 57 241
[6] Chate H and Manneville P 1987 Phys. Rev. Lett. 58 112
[6a] Chate H, Pikovsky A and Rudzick O 1999 Physica D 131 17
[7] Janiaud B, Pumir A, Bensimon D, Croquette V, Richter H and Kramer L 1992 Physica (Amsterdam) 55D 269
[8] Chate H and Manneville P 1996 Physica A 224 348
[9] Chate H 1994 Nonlinearity 7 185
[9a] Cladis P E and Palffy-Muhoray P 1995 Spatio-Temporal Pattern Formation in Nonequilibrium Complex Systems (Reading MA: Addison Wesley) p33
[9b] Ma J, Gao C and Tan L Y 2007 Chin. Phys. 16 1327
[10] Montagne R, Hernandez-Garcia E and San Miguel M 1996 Phys. Rev. Lett. 77 267
[10a] Montagne R, Hern\'{andez-Garc\'{\hia E, Amengual A and San Miguel M 1997 Phys. Rev. E 56 151
[11] Torcini A 1996 Phys. Rev. Lett. 77 1047
[11a] Torcini A, Frauenkron H and Grassberger P 1997 Phys. Rev. E 55 5073
[12] van Saarloos W and Hohenberg P C 1992 Physica (Amsterdam) 56D 303
[12a] van Saarloos W and Hohenberg P C 1993 Physica (Amsterdam) 69D 209 (Errata)
[13] van Hecke M 1998 Phys. Rev. Lett. 80 1896
[14] Chat\'{e H 1995 Physica (Amsterdam) 86D 238
[15] Popp S, Stiller O, Aranson I, Weber A and Kramer L 1993 Phys. Rev. Lett. 70 3880
[16] Torcini A 1996 Phys. Rev. Lett. 77 1047
[17] Aston P J and Laing C R 2000 Physica D 135 79
[17a] Fujisaka H, Ouchi K, Hata H, Masaoka B and Miyazaki S 1998 Physica D 114 237
[18] Carolina B, Igor S A and Hugues C 2003 Phys. Rev. Lett. 90 068301
[19] Abarzhi S I, Desjardins O, Nepomnyashchy A and Pitsch H 2007 Phys. Rev. E 75 046208
[20] Zhou Q, Chen Z Q and Yuan Z Z 2007 Chin. Phys. 16 1616
[21] B enjamin T B and Feir J E 1967 J. Fluid Mech. 27 417
[22] Hu B and Rudnick J 1982 Phys. Rev. Lett. 48 1645
[23] Heagy J F, Platt N and Hammel S M 1994 Phys. Rev. E 49 1140
[1] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[2] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[5] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[8] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[9] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[10] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[11] Estimation of co-channel interference between cities caused by ducting and turbulence
Kai Yang(杨凯), Zhensen Wu(吴振森), Xing Guo(郭兴), Jiaji Wu(吴家骥), Yunhua Cao(曹运华), Tan Qu(屈檀), and Jiyu Xue(薛积禹). Chin. Phys. B, 2022, 31(2): 024102.
[12] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[13] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[14] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[15] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
No Suggested Reading articles found!