Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 108204    DOI: 10.1088/1674-1056/19/10/108204
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Depletion interactions in binary mixtures of repulsive colloids

Li Wei-Hua(李卫华) and Qiu Feng(邱枫)
The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education, and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
Abstract  Acceptance ratio method, which has been used to calculate the depletion potential in binary hard-sphere mixtures, is extended to the computation of the depletion potential of non-rigid particle systems. The repulsive part of the Lennard–Jones pair potential is used as the direct pair potential between the non-rigid particles. The depletion potential between two big spheres immersed in a suspension of small spheres is determined with the acceptance ratio method through the application of Monte Carlo simulation. In order to check the validity of this method, our results are compared with those obtained by the Asakura–Oosawa approximation, and by Varial expansion approach, and by molecular dynamics simulation. The total effective potential and the depth of its potential well are computed for various softness parameters of the direct pair potential.
Keywords:  acceptance ratio method      Monte Carlo      depletion interaction  
Received:  10 November 2009      Revised:  24 May 2010      Accepted manuscript online: 
PACS:  61.20.Ja (Computer simulation of liquid structure)  
  61.25.H- (Macromolecular and polymers solutions; polymer melts)  
  82.70.Dd (Colloids)  
  82.70.Kj (Emulsions and suspensions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 20974026), the Shanghai Pujiang Program of China (Grant No. 08PJ1402000), and the Shanghai Educational Development Foundation of China (Grant No. 2008CG02).

Cite this article: 

Li Wei-Hua(李卫华) and Qiu Feng(邱枫) Depletion interactions in binary mixtures of repulsive colloids 2010 Chin. Phys. B 19 108204

[1] Gast A P and Russel W B 1998 Phys. Today 51 24
[2] Likos C N 2001 Phys. Rep. 348 267
[3] Russel W B, Saville D A and Schowalter W R 1992 Colloidal Dispersions (Cambridge: Cambridge University Press)
[4] Dijkstra M, van Roij R and Evans R 1998 Phys. Rev. Lett. 81 2268
[5] Dijkstra M, van Roij R and Evans R 1999 Phys. Rev. Lett. 82 117
[6] Dijkstra M, van Roij R and Evans R 1999 Phys. Rev. E 59 5744
[7] Dijkstra M, Brader J M and Evans R 1999 J. Phys.: Condens. Matter 11 10079
[8] de Hoog E H A, Kegel W K, van Blaaderen A and Lekkerkerker H N W 2001 Phys. Rev. E 64 021407
[9] Bolhuis P G, Louis A A and Hansen J P 2002 Phys. Rev. Lett. 89 128301
[10] Asakura S and Oosawa F 1954 J. Chem. Phys. 22 1255
[11] Asakura S and Oosawa F 1958 J. Polym. Sci. 23 183
[12] Vrij A 1976 Pure Appl. Chem. 48 471
[13] Gast A P, Hall C K and Russel W B 1983 J. Colloid Interface Sci. 96 251
[14] Gast A P, Hall C K and Russel W B 1986 J. Colloid Interface Sci. 109 161
[15] Wood W W and Jacobson J D 1957 J. Chem. Phys. bf27 1207
[16] Alder B J and Wainwright T E 1957 J. Chem. Phys. bf27 1208
[17] Roth R, Evans R and Louis A A 2001 Phys. Rev. E 64 051202
[18] Louis A A and Roth R 2001 J. Phys.: Condens. Matter 13 L777
[19] Dinsmore A D, Wong D T, Nelson P and Yodh A G 1998 Phys. Rev. Lett. 80 409
[20] Dinsmore A D, Yodh A G and Pine D J 1996 Nature 383 239
[21] Crocker J C, Matteo J A, Dinsmore A D and Yodh A G 1999 Phys. Rev. Lett. 82 4352
[22] Roth R, Evans R and Dietrich S 2000 Phys. Rev. E 62 5360
[23] Rosenfeld Y 1989 Phys. Rev. Lett. 63 980
[24] Rosenfeld Y 1993 J. Chem. Phys. 98 8126
[25] Almarza N G and Enciso E 1999 Phys. Rev. E 59 4426
[26] Cinacchi G, Martinez-Raton Y, Mederos L, Navascues G, Tani A and Velasco E 2007 J. Chem. Phys. 127 214501
[27] Biben T, Bladon P and Frenkel D 1996 J. Phys.: Condens. Matter 8 10799
[28] Dickman R, Attard P and Simonian V 1997 J. Chem. Phys. 107 205
[29] Li W H and Ma H R 2004 Chin. Phys. Lett. 21 1175
[30] Percus S K and Yevick G J 1958 Phys. Rev. 110 1
[31] Rogers F J and Young D A 1984 Phys. Rev. A 30 999
[32] Ballone P, Pastore G, Galli G and Gazzillo D 1986 Mol. Phys. 59 275
[33] Bolhuis P G, Louis A A, Hansen J P and Meijer E J 2000 J. Chem. Phys. 114 4296
[34] Li W H and Ma H R 2002 Phys. Rev. E 66 061407
[35] Ciccotti G and Ryckaert J P 1986 Comput. Phys. Rep. 4 345
[36] Shinto H, Myiahara M and Higoshitani K 1999 J. Colloid Interface Sci. 209 79
[37] Li W H and Ma H R 2005 Eur. Phys. J. E 12 321
[38] Li W H and Ma H R 2003 Eur. Phys. J. 16 225
[39] Li W H and Ma H R 2003 J. Chem. Phys. 119 585
[40] Zhu D M, Li W H and Ma H R 2003 J. Phys.: Condens. Matter 15 8281
[41] Li W H, Yang T and Ma H R 2008 J. Chem. Phys. 128 044910
[42] Xiao C M, Guo J Y and Li C S 2006 Europhys. Lett. 73 443
[43] Guo J Y, Huang L X and Xiao C M 2006 Chin. Phys. 15 1638
[44] Germain P, Malherbe J G and Amokrane S 2004 Phys. Rev. E 70 041409
[45] Germain P, Bouaskarne M, Malherbe J G, Regnaut C and Amokrane S 2004 Prog. Colloid Polym. Sci. 126 102
[46] Walz J Y and Sharma A 1994 J. Colloid Interface Sci. 168 485
[47] Amokrane S 1998 J. Chem. Phys. 108 7459
[48] Malherbe J and Amokrane S 1999 Mol. Phys. 97 677
[49] Clement-Cottuz J, Amokrane A and Regaut C 2000 Phys. Rev. E 61 1692
[50] Macuteendez-Alcaraz J M and Klein R 2000 Phys. Rev. E 61 4095
[51] Bennett C H 1976 J. Comput. Phys. 22 245
[52] Allen M P and Tildesley D J 1994 Computer Simulation of Liquids (Oxford: Clarendon Press) Chap. 7
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Computational studies on magnetism and ferroelectricity
Ke Xu(徐可), Junsheng Feng(冯俊生), and Hongjun Xiang(向红军). Chin. Phys. B, 2022, 31(9): 097505.
[3] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
[4] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[5] Solving quantum rotor model with different Monte Carlo techniques
Weilun Jiang(姜伟伦), Gaopei Pan(潘高培), Yuzhi Liu(刘毓智), and Zi-Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(4): 040504.
[6] A sport and a pastime: Model design and computation in quantum many-body systems
Gaopei Pan(潘高培), Weilun Jiang(姜伟伦), and Zi Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(12): 127101.
[7] Steady-state and transient electronic transport properties of β-(AlxGa1-x)2O3/Ga2O3 heterostructures: An ensemble Monte Carlo simulation
Yan Liu(刘妍), Ping Wang(王平), Ting Yang(杨婷), Qian Wu(吴茜), Yintang Yang(杨银堂), and Zhiyong Zhang(张志勇). Chin. Phys. B, 2022, 31(11): 117305.
[8] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[9] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[10] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[11] Zero-field skyrmions in FeGe thin films stabilized through attaching a perpendicularly magnetized single-domain Ni layer
Zi-Bo Zhang(张子博) and Yong Hu(胡勇). Chin. Phys. B, 2021, 30(7): 077503.
[12] Monte Carlo simulations of electromagnetically induced transparency in a square lattice of Rydberg atoms
Shang-Yu Zhai(翟尚宇) and Jin-Hui Wu(吴金辉). Chin. Phys. B, 2021, 30(7): 074206.
[13] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[14] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
[15] GEANT4 simulation study of over-response phenomenon of fiber x-ray sensor
Bin Zhang(张彬), Tian-Ci Xie(谢天赐), Zhuang Qin(秦壮), Hao-Peng Li(李昊鹏), Song Li(李松), Wen-Hui Zhao(赵文辉), Zi-Yin Chen(陈子印), Jun Xu(徐军), Elfed Lewis, and Wei-Min Sun(孙伟民). Chin. Phys. B, 2021, 30(4): 048701.
No Suggested Reading articles found!