Please wait a minute...
Chinese Physics, 2006, Vol. 15(12): 2819-2827    DOI: 10.1088/1009-1963/15/12/009
GENERAL Prev   Next  

A method of solving the stiffness problem in Biot's poroelastic equations using a staggered high-order finite-difference

Zhao Hai-Bo(赵海波)a), Wang Xiu-Ming(王秀明)a)b), and Chen Hao(陈浩)a)
a Institute of Acoustics, Chinese Academy of Sciences, Beijing 100080, China; b Australian Resources Research Centre, Australian Commonwealth Scientific and Industrial Research Organization, Bentley WA 6102, Australia
Abstract  In modelling elastic wave propagation in a porous medium, when the ratio between the fluid viscosity and the medium permeability is comparatively large, the stiffness problem of Biot's poroelastic equations will be encountered. In the paper, a partition method is developed to solve the stiffness problem with a staggered high-order finite-difference. The method splits the Biot equations into two systems. One is stiff, and solved analytically, the other is nonstiff, and solved numerically by using a high-order staggered-grid finite-difference scheme. The time step is determined by the staggered finite-difference algorithm in solving the nonstiff equations, thus a coarse time step may be employed. Therefore, the computation efficiency and computational stability are improved greatly. Also a perfect by matched layer technology is used in the split method as absorbing boundary conditions. The numerical results are compared with the analytical results and those obtained from the conventional staggered-grid finite-difference method in a homogeneous model, respectively. They are in good agreement with each other. Finally, a slightly more complex model is investigated and compared with related equivalent model to illustrate the good performance of the staggered-grid finite-difference scheme in the partition method.
Keywords:  porous media      stiffness      partition method      staggered grid      finite difference  
Received:  13 April 2006      Revised:  29 April 2006      Accepted manuscript online: 
PACS:  91.60.Ba (Elasticity, fracture, and flow)  
  47.11.-j (Computational methods in fluid dynamics)  
  91.60.Np (Permeability and porosity)  
  91.60.Qr (Wave attenuation)  
Fund: Project supported by the ``100 Talents Project" of the Chinese Academy of Sciences and the Major Program of the National Natural Science Foundation of China (Grant No 10534040).

Cite this article: 

Zhao Hai-Bo(赵海波), Wang Xiu-Ming(王秀明), and Chen Hao(陈浩) A method of solving the stiffness problem in Biot's poroelastic equations using a staggered high-order finite-difference 2006 Chinese Physics 15 2819

[1] Drop impact on substrates with heterogeneous stiffness
Yang Cheng(成阳), Jian-Gen Zheng(郑建艮), Chen Yang(杨晨), Song-Lei Yuan(袁松雷), Guo Chen(陈果), and Li-Yu Liu(刘雳宇). Chin. Phys. B, 2022, 31(8): 084702.
[2] Mechanism analysis and improved model for stick-slip friction behavior considering stress distribution variation of interface
Jingyu Han(韩靖宇), Jiahao Ding(丁甲豪), Hongyu Wu(吴宏宇), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2022, 31(3): 034601.
[3] Lateral magnetic stiffness under different parameters in a high-temperature superconductor levitation system
Yong Yang(杨勇) and Yun-Yi Wu(吴云翼). Chin. Phys. B, 2021, 30(7): 077404.
[4] Shear-horizontal transverse-electric seismoelectric waves in cylindrical double layer porous media
Wei-Hao Wang(王伟豪), Xiao-Yan Zhu(朱晓焱), Jin-Xia Liu(刘金霞), and Zhi-Wen Cui(崔志文). Chin. Phys. B, 2021, 30(1): 014301.
[5] Frequency-dependent reflection of elastic wave from thin bed in porous media
Hong-Xing Li(李红星), Chun-Hui Tao(陶春辉), Cai Liu(刘财), Guang-Nan Huang(黄光南), Zhen-An Yao(姚振岸). Chin. Phys. B, 2020, 29(6): 064301.
[6] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[7] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[8] Reducing the calculation workload of the Green function for electromagnetic scattering in a Schwarzschild gravitational field
Shou-Qing Jia(贾守卿). Chin. Phys. B, 2019, 28(7): 070401.
[9] Measuring the flexibility matrix of an eagle's flight feather and a method to estimate the stiffness distribution
Di Tang(唐迪), Hai Zhu(朱海), Wei Yuan(袁巍), Zhongyong Fan(范忠勇), Mingxia Lei(雷鸣霞). Chin. Phys. B, 2019, 28(7): 074703.
[10] Compact finite difference schemes for the backward fractional Feynman-Kac equation with fractional substantial derivative
Jiahui Hu(胡嘉卉), Jungang Wang(王俊刚), Yufeng Nie(聂玉峰), Yanwei Luo(罗艳伟). Chin. Phys. B, 2019, 28(10): 100201.
[11] Influence of particle packing structure on sound velocity
Chuang Zhao(赵闯), Cheng-Bo Li(李成波), Lin Bao(鲍琳). Chin. Phys. B, 2018, 27(10): 104501.
[12] Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media
Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌). Chin. Phys. B, 2017, 26(7): 073101.
[13] Experimental study and theoretical analysis of fluid resistance in porous media of glass spheres
Tong Wang(王彤), Kun-Can Zheng(郑坤灿), Yu-Peng Jia(贾宇鹏), Cheng-Lu Fu(付承鹭), Zhi-Jun Gong(龚志军), Wen-Fei Wu(武文斐). Chin. Phys. B, 2017, 26(7): 074701.
[14] Buckling analysis of nanobeams with exponentially varying stiffness by differential quadrature method
S Chakraverty, Laxmi Behera. Chin. Phys. B, 2017, 26(7): 074602.
[15] Density and temperature reconstruction of a flame-induced distorted flow field based on background-oriented schlieren (BOS) technique
Guang-Ming Guo(郭广明), Hong Liu(刘洪). Chin. Phys. B, 2017, 26(6): 064701.
No Suggested Reading articles found!