Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074602    DOI: 10.1088/1674-1056/26/7/074602
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Buckling analysis of nanobeams with exponentially varying stiffness by differential quadrature method

S Chakraverty, Laxmi Behera
Department of Mathematics, National Institute of Technology Rourkela, Odisha, India
Abstract  We present the application of differential quadrature (DQ) method for the buckling analysis of nanobeams with exponentially varying stiffness based on four different beam theories of Euler–Bernoulli, Timoshenko, Reddy, and Levison. The formulation is based on the nonlocal elasticity theory of Eringen. New results are presented for the guided and simply supported guided boundary conditions. Numerical results are obtained to investigate the effects of the nonlocal parameter, length-to-height ratio, boundary condition, and nonuniform parameter on the critical buckling load parameter. It is observed that the critical buckling load decreases with increase in the nonlocal parameter while the critical buckling load parameter increases with increase in the length-to-height ratio.
Keywords:  differential quadrature method      exponentially varying stiffness      different beam theories  
Received:  12 November 2016      Revised:  03 March 2017      Accepted manuscript online: 
PACS:  46.70.Lk (Other structures)  
  46.70.De (Beams, plates, and shells)  
  46.15.Cc (Variational and optimizational methods)  
  45.10.Db (Variational and optimization methods)  
Corresponding Authors:  S Chakraverty     E-mail:  sne_chak@yahoo.com

Cite this article: 

S Chakraverty, Laxmi Behera Buckling analysis of nanobeams with exponentially varying stiffness by differential quadrature method 2017 Chin. Phys. B 26 074602

[1] Yang L, Hu L and Zhang X G 2015 Acta Phys. Sin. 64 0134502
[2] Zhang W, Hu L, Zhang G 2016 Acta Phys. Sin. 65 024502
[3] Dai Z D, Li S L, Li D L and Zhu A J 2007 Chin. Phys. Lett. 24 1429
[4] Ruud J A, Jervis T R and Spaepan F 1994 J. Appl. Phys. 75 4969
[5] Peng H, Chang C, Aloni S, Yuzvinsky T and Zettl A 2006 Phys. Rev. Lett. 97 087203
[6] Dubey A, Sharma G, Mavroidis C, Tomassone M, Nikitczuk K and Yarmush M 2004 Journal of Computational and Theoretical Nanoscience 1 18
[7] Liu J, Sun J and Zuo P 2016 Acta Mechanica Solida Sinica 29 192
[8] Eringen A C 1972 International Journal of Engineering Science 10 1
[9] Duan W, Wang C M and Zhang Y 2007 J. Appl. Phys. 101 024305
[10] Huang L, Han Q and Liang Y 2012 Nano 7 125003
[11] Xu M 2006 Proc. Roy. Soc. A:Math. Phys. Eng. Sci. 462 2977
[12] Wang C M, Zhang Y Y, Ramesh S S and Kitipornchai S 2006 J. Phys.D:Appl. Phys. 39 3904
[13] Reddy J 2007 International Journal of Engineering Science 45 307
[14] Emam S A 2013 Applied Mathematical Modelling 37 6929
[15] Aydogdu M 2009 Physica E 41 1651
[16] Thai H T 2012 International Journal of Engineering Science 52 56
[17] Reddy J and Pang S 2008 J. Appl. Phys. 103 023511
[18] Kumar D, Heinrich C and Waas A M 2008 J. Appl. Phys. 103 073521
[19] Şimşek M and Yurtcu H 2013 Composite Structures 97 378
[20] Yang Y and Lim C W 2011 Nano 6 363
[21] Ansari R, Sahmani S and Rouhi H 2011 Computational Materials Science 50 3050
[22] Ghannadpour S A M, Mohammadi B and Fazilati J 2013 Composite Structures 96 584
[23] Ansari R, Sahmani S and Rouhi H 2011 Phys. Lett. A 375 1255
[24] Behera L and Chakraverty S 2014 Meccanica 49 51
[25] Chakraverty S and Behera L 2014 Physica E 56 357
[26] Pradhan S and Reddy G 2011 Computational Materials Science 50 1052
[27] Sahmani S and Ansari R 2011 Journal of Mechanical Science and Technology 25 2365
[28] Narendar S and Gopalakrishnan S 2011 Physica E 43 1185
[29] Yan Y, Wang W and Zhang L 2010 Applied Mathematical Modelling 34 3422
[30] Pradhan S C 2009 Phys. Lett. A 373 4182
[31] Pradhan S C and Murmu T 2010 Physica E 42 1293
[32] Pradhan S C 2012 Sadhana 37 461
[33] Narendar S 2011 Composite Structures 93 3093
[34] Bellman R and Casti J 1971 Journal of Mathematical Analysis and Applications 34 235
[35] Bert C W, Jang S K and Striz A G 1988 AIAA J. 26 612
[36] Jang S K, Bert C W and Striz A G 1989 International Journal for Numerical Methods in Engineering 28 561
[37] Shu C 2000 Differential Guadrature and its Application in Engineering (New York:Springer)
[38] Wang X and Bert C W 1993 Journal of Sound and Vibration 162 566
[39] Bert C, Wang X and Striz A 1994 Acta Mechanica 102 11
[40] Wang X, Bert C and Striz A 1993 Computers and Structures 48 473
[41] Bert C W, Xinwei W and Striz A G 1993 International Journal of Solids and Structures 30 1737
[42] Bert C W and Malik M 1996 International Journal of Mechanical Sciences 38 589
[43] Konstantakopoulos T G, Raftoyiannis I G and Michaltsos G T 2012 Open Construction and Building Technology Journal 6 1
[44] Sapountzakis E and Tsiatas G 2007 Engineering structures 29 675
[45] Farajpour A, Danesh M and Mohammadi M 2007 Physica E 44 719
[46] Quan J and Chang C 1989 Computers and Chemical Engineering 13 779
No related articles found!
No Suggested Reading articles found!