Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(9): 097503    DOI: 10.1088/1674-1056/acaf2d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of TbF3 diffusion on the demagnetization behavior and domain evolution of sintered Nd-Fe-B magnets by electrophoretic deposition

Xue-Jing Cao(曹学静)1,2,†, Shuai Guo(郭帅)1,2, Yu-Heng Xie(谢宇恒)1,2, Lei Jin(金磊)1,2, Guang-Fei Ding(丁广飞)1,2, Bo Zheng(郑波)1,2, Ren-Jie Chen(陈仁杰)1,2, and A-Ru Yan(闫阿儒)1,2
1 CISRI and NIMTE Joint Innovation Center for Rare Earth Permanent Magnets, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
2 CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Abstract  We studied the magnetic properties and domain evolution of annealed and TbF3-diffused sintered Nd-Fe-B magnets using the electrophoretic deposition method. After TbF3 diffusion, the coercivity increased significantly by 9.9 kOe and microstructural analysis suggested that Tb favored the formation of the (Nd, Tb)2Fe14B shell phase in the outer region of the matrix grains. The first magnetization reversal and the dynamic successive domain propagation process were detected with a magneto-optical Kerr microscope. For the TbF3-diffused magnet, the magnetization reversal appeared at a larger applied field and the degree of simultaneous magnetization reversal decreased compared with an annealed magnet. During demagnetization after full magnetization, the occurrence of domain wall motion (DWM) in the reproduced multi-domain regions was observed by the step method. The maximum polarization change resulting from the reproduced DWM was inversely related to the coercivity. The increased coercivity for the diffused magnet was mainly attributed to the more difficult nucleation of the magnetic reversed region owing to the improved magneto-crystalline anisotropy field as a result of Tb diffusion.
Keywords:  sintered Nd-Fe-B magnet      electrophoretic deposition      grain boundary diffusion      domain evolution  
Received:  14 November 2022      Revised:  22 December 2022      Accepted manuscript online:  30 December 2022
PACS:  75.50.Ww (Permanent magnets)  
  75.50.Vv (High coercivity materials)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
  75.60.Jk (Magnetization reversal mechanisms)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 52101238), the “Pioneer” and “Leading Goose” Research and Development Program of Zhejiang (Grant No. 2021C01190), and Major Project of Ningbo Science and Technology Innovation 2025 (Grant No. 2020Z046).
Corresponding Authors:  Xue-Jing Cao     E-mail:  caoxuejing@nimte.ac.cn

Cite this article: 

Xue-Jing Cao(曹学静), Shuai Guo(郭帅), Yu-Heng Xie(谢宇恒), Lei Jin(金磊), Guang-Fei Ding(丁广飞),Bo Zheng(郑波), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒) Effect of TbF3 diffusion on the demagnetization behavior and domain evolution of sintered Nd-Fe-B magnets by electrophoretic deposition 2023 Chin. Phys. B 32 097503

[1] Sagawa M, Fujimura S, Togawa N, Yamamoto H and Matsuura Y 1984 J. Appl. Phys. 55 2083
[2] Gutfleisch O, Willard M A, Brück E, Chen C H, Sankar S G and Liu J P 2011 Adv. Mater. 23 821
[3] Cao X J, Chen L, Guo S, Di J H, Ding G F, Chen R J, Yan A R and Chen K Z 2018 AIP Adv. 8 056222
[4] Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M and Yamauchi H 1986 J. Appl. Phys. 59 873
[5] Fukagawa T, Hirosawa S, Ohkubo T and Hono K 2009 J. Appl. Phys. 105 07A724
[6] Hrkac G, Woodcock T G, Freeman C, Goncharov A, Dean J, Schrefl T and Gutfleisch O 2010 Appl. Phys. Lett. 97 232511
[7] Löewe K, Brombacher C, Katter M and Gutfleisch O 2015 Acta Mater. 83 248
[8] Ma T Y, Wang X J, Liu X L, Wu C and Yan M 2015 J. Phys. D: Appl. Phys. 48 215001
[9] Xu F, Wang J, Dong X, Zhang L and Wu J 2011 J. Alloys Compd. 509 7909
[10] Nakamura H, Hirota K, Shimao M, Minowa T and Honshima M 2005 IEEE Trans. Magn. 41 3844
[11] Soderžnik M, Rožman K Ž, Kobe S and McGuiness P 2012 Intermetallics 23 158
[12] Cao X J, Chen L, Guo S, Chen R J, Yan G L and Yan A R 2016 Scr. Mater. 116 40
[13] Cao X J, Chen L, Guo S, Li X B, Yi P P, Yan A R and Yan G L 2015 J. Alloys Compd. 631 315
[14] Li D S, Suzuki S, Kawasaki T and Machida K 2008 Jpn. J. Appl. Phys. 47 7876
[15] Ji W X, Liu W Q, Yue M, Zhang D T and Zhang J X 2015 Physica B 476 147
[16] Sepehri-Amin H, Ohkubo T and Hono K 2013 Acta Mater. 61 1982
[17] Cao X J, Chen L, Guo S, Fan F C, Chen R J and Yan A R 2017 Scr. Mater. 131 24
[18] Oikawa T, Yokota H, Ohkubo T and Hono K 2016 AIP Adv. 6 056006
[19] Takezawa M, Ogimoto H, Kimura Y and Morimoto Y 2014 J. Appl. Phys. 115 17A733
[20] Liu W Q, Chang C, Yue M, Yang J S, Zhang D T, Zhang J X and Liu Y Q 2014 Rare Met. 36 718
[21] Watanabe N, Itakura M, Kuwano N, Li D S, Suzuki S and Machida K I 2007 Mater. Trans. 48 915
[22] Lu K C, Bao X Q, Tang M H, Chen G X, Mu X, Li J H and Gao X X 2017 Scr. Mater. 138 83
[23] Jin L, Ding G F, Zhu J H, Jin Z H, Zheng B, Guo S, Chen R J, Yan A R and Liu X C 2021 J. Alloys Compd. 870 159375
[24] Chen G X, Bao X Q, Lu K C, Lv X K, Ding Y, Zhang M, Wang C, Gao X X 2019 J. Magn. Magn. Mater. 477 17
[25] Zhao L Z, He J Y, Li W, Liu X L, Zhang J, Wen L, Zhang Z H, Hu J W, Zhang J S, Liao X F, Xu K, Fan W B, Song W Y, Yu H Y, Zhong X C, Liu Z W and Zhang X F 2021 Adv. Funct. Mater. 32 2109529
[26] Helbig T, Loewe K, Sawatzki S, Yi M, Xu B X and Gutfleisch O 2017 Acta Mater. 127 498
[27] Kobayashi K, Nimura Y, Urushibata K and Hayakawa K 2018 J. Magn. Magn. Mater. 451 493
[1] Thermal expansion behavior of sintered Nd-Fe-B magnets with different Co contents and orientations
Rui-Yang Meng(孟睿阳), Ji-Yuan Xu(徐吉元), Jia-Teng Zhang(张家滕), Jing Liu(刘静), Yi-Kun Fang(方以坤), Sheng-Zhi Dong(董生智), and Wei Li(李卫). Chin. Phys. B, 2023, 32(5): 056501.
[2] Optimization of the grain boundary diffusion process by doping gallium and zirconium in Nd-Fe-B sintered magnets
Zhiteng Li(李之藤), Haibo Xu(徐海波), Feng Liu(刘峰), Rongshun Lai(赖荣舜), Renjie Wu(武仁杰), Zhibin Li(李志彬), Yangyang Zhang(张洋洋), and Qiang Ma(马强). Chin. Phys. B, 2023, 32(10): 107503.
[3] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[4] Effect of metal nanoparticle doping concentration on surface morphology and field emission properties of nano-diamond films
Yao Wang(王垚), Sheng-Wang Yu(于盛旺), Yan-Peng Xue(薛彦鹏), Hong-Jun Hei(黑鸿君), Yan-Xia Wu(吴艳霞), and Yan-Yan Shen(申艳艳). Chin. Phys. B, 2021, 30(6): 068101.
[5] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[6] Ultraviolet emission of ZnO film prepared by electrophoretic deposition
Wang Zhi-Jun (王志军), Wang Zhi-Jian (王之建), Li Shou-Chun (李守春), Wang Ze-Heng (王泽恒), Lü You-Ming (吕有明), Yuan Jin-Shan (元金山). Chin. Phys. B, 2004, 13(5): 750-753.
[7] Fabrication of YBCO/YSZ and YBCO/MgO thick films using electrophoretic deposition with top-seeded melt growth process
Zhu Ya-Bin (朱亚彬), Zhou Yue-Liang (周岳亮), Wang Shu-Fang (王淑芳), Liu Zhen (刘震), Zhang Qin (张芹), Chen Zheng-Hao (陈正豪), Lü Hui-Bin (吕惠宾), Yang Guo-Zhen (杨国桢). Chin. Phys. B, 2004, 13(2): 238-242.
No Suggested Reading articles found!