Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(9): 098106    DOI: 10.1088/1674-1056/ac67c9
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition

Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹)
School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  The influences of undercooling rate and cooling rate on the microstructural evolution of ternary Cu45Zr45Ag10 alloy using single-roller melt spinning and drop tube are investigated. The rapidly quenched alloy ribbons achieve a homogeneous glass structure. The microstructure of the droplets transforms from the Cu10Zr7 dendrites plus (Cu10Zr7+AgZr) eutectic into Cu10Zr7 dendrite with the decrease of droplet diameter. As the diameter decreases to 180 μm, the Cu45Zr45Ag10 alloy changes from crystal to amorphous structure, showing that the cooling rate is not the only influence factor and the undercooling play a certain role in the forming of the amorphous alloy at the same time under microgravity condition.
Keywords:  Cu-Zr-Ag      rapid solidification      microgravity      glass transformation  
Received:  06 March 2022      Revised:  02 April 2022      Accepted manuscript online:  18 April 2022
PACS:  81.30.Fb (Solidification)  
  81.10.Mx (Growth in microgravity environments)  
  81.05.Kf (Glasses (including metallic glasses))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51671161, u1806219, and 52088101) and the Natural Science Foundation Research Project of Shanxi Province, China (Grant No. 2020JZ-08).
Corresponding Authors:  Fu-Ping Dai     E-mail:  fpdai@nwpu.edu.cn

Cite this article: 

Ming-Hua Su(苏明华), Fu-Ping Dai(代富平), and Ying Ruan(阮莹) Amorphous transformation of ternary Cu45Zr45Ag10 alloy under microgravity condition 2022 Chin. Phys. B 31 098106

[1] Lavernia E J and Srivatsan T S 2010 J. Mater. Sci. 45 287
[2] Dai F P, Wu Y H, Wang W L and Wei B 2018 Metall. Mater. Trans. A 49A 5478
[3] Haque N Cochrane R F and Mullis A M 2016 Intermetallics 76 70
[4] Clopet C R, Cochrane R F and Mullis A M 2013 Appl. Phys. Lett. 102 031906
[5] Zhou X, Liu Z W, Yu H Y, Zhang H and Zhang G Q 2020 Physica B 599 412549
[6] Xu S S, Wu W H, Chang J, S S and Wei B 2022 Metall. Mater. Trans. A 53A 762
[7] Zhang Y K, Zhu J, Li S, Wang J and Ren A M 2022 J. Mater. Sci. & Tech. 102 66
[8] Yamauchi I and Kawamura H 2004 J. Alloys Compd. 370 137
[9] Kim Y W 2008 J. Mater. Sci. Technol. 24 89
[10] Kim Y W 2012 Mater. Res. Bull. 47 2956
[11] Chen F C, Dai F P, Yang X Y, Ruan Y and Wei B 2020 Chin. Phys. B 29 066401
[12] Cochrane R F, Evans P V and Greer A L 1988 Mater. Sci. Eng. 98 799
[13] Ruan Y, Wang Q Q, Chang S Y and Wei B 2017 Acta Mater. 141 456
[14] Hua H Y, Tian Y Z, Yu H W, Ling G P, Li S, Jiang M, Li H X and Qin G W 2022 Mater. Lett. 315 131937
[15] Wang Q, Liu C T, Yang Y, Liu J B, Dong Y D and Lu J 2014 Sci. Rep. 4 4648
[16] Calvayrac Y, Chevalier J P, Harmelin M, Quivy A and Bigot J 1983 Phil. Mag. B 48 323
[17] Zhang Q, Zhang W and Inoue A 2006 Scr. Mater. 55 711
[18] Duan G, Blauwe K, Lind M L, Schramm J P and Johnson W L 2008 Scr. Mater. 58 159
[19] Zhang W, Jia F, Zhang Q S and Inoue A 2007 Mater. Sci. Eng. A 459 330
[20] Song K K, Gargarella P, Pauly S, Ma G Z, Kuhn U and Eckert J 2012 J. Appl. Phys. 112 063503
[21] Song K K, Pauly S, Zhang Y, Sun B A, He J, Ma G Z, Kühn U and Eckert J 2013 Mater. Sci. Eng. A 559 711
[22] Barekar N, Gargarella P, Song K K, Kühn U and Eckert J 2011 J. Mater. Res. 26 1702
[23] Levi C G and Mehrabian R 1982 Metall. Mater. Trans. A 13 221
[24] Lee E S and Ahn S 1994 Acta Metall. Mater. 42 3231
[25] Gale W F and Totemeir T C 2003 Smithells Metals Reference Book, 8th edn. (Burlington:Elsevier Butterworth-Heinemann) p. 8-1
[26] Inoue A and Zhang W 2006 J. Mater. Res. 21 234
[27] Louzguine-Luzgin D V, Xie G, Zhang W and Inoue A 2007 Mater. Sci. Eng. A 465 146
[1] Space continuous atom laser in one dimension
Yi Qin(秦毅), Xiao-Yang Shen(沈晓阳), Wei-Xuan Chang(常炜玄), and Lin Xia(夏林). Chin. Phys. B, 2023, 32(1): 013701.
[2] One-dimensional atom laser in microgravity
Yi Qin(秦毅), Xiaoyang Shen(沈晓阳), and Lin Xia(夏林). Chin. Phys. B, 2021, 30(11): 110306.
[3] Experimental and numerical study on energy dissipation in freely cooling granular gases under microgravity
Wen-Guang Wang(王文广), Mei-Ying Hou(厚美瑛), Ke Chen(陈科), Pei-Dong Yu(虞培东), Matthias Sperl. Chin. Phys. B, 2018, 27(8): 084501.
[4] Metastable phase separation and rapid solidification of undercooled Co40Fe40Cu20 alloy
Xiaojun Bai(白晓军), Yaocen Wang(汪姚岑), Chongde Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116402.
[5] DEM simulation of granular segregation in two-compartment system under zero gravity
Wenguang Wang(王文广), Zhigang Zhou(周志刚), Jin Zong(宗谨), Meiying Hou(厚美瑛). Chin. Phys. B, 2017, 26(4): 044501.
[6] Phase constitution and microstructure of Ce-Fe-B strip-casting alloy
Yan Chang-Jiang (严长江), Guo Shuai (郭帅), Chen Ren-Jie (陈仁杰), Lee Dong (李东), Yan A-Ru (闫阿儒). Chin. Phys. B, 2014, 23(10): 107501.
[7] Oxygen ion conductivity of La0.8Sr0.2Ga0.83Mg0.17-xCoxO3-δ synthesized by laser rapid solidification
Zhang Jie (张洁), Yuan Chao (袁超), Wang Jun-Qiao (王俊俏), Liang Er-Jun (梁二军), Chao Ming-Ju (晁明举). Chin. Phys. B, 2013, 22(8): 087201.
[8] Effect of buoyancy-driven convection on steady state dendritic growth in a binary alloy
Chen Ming-Wen (陈明文), Wang Bao (王宝), Wang Zi-Dong (王自东). Chin. Phys. B, 2013, 22(11): 116805.
[9] Amorphous-crystalline dual-layer structures resulting from metastable liquid phase separation in (Fe50Co25B15Si10)80Cu20 melt-spun ribbons
Cao Chong-De (曹崇德), Gong Su-Lian (弓素莲), Guo Jin-Bo (郭晋波), Song Rui-Bo (宋瑞波), Sun Zhan-Bo (孙占波), Yang Sen (杨森), Wang Wei-Min (王伟民 ). Chin. Phys. B, 2012, 21(8): 086102.
[10] Formation mechanism of anomalous eutectics in highly undercooled Ag--39.9 at%Cu alloys
Zhao Su(赵素), Li Jin-Fu(李金富), Liu Li(刘礼), and Zhou Yao-He(周尧和). Chin. Phys. B, 2009, 18(5): 1917-1922.
[11] Solute distribution in KNbO3 melt-solution and its effect on dendrite growth during rapid solidification
Pan Xiu-Hong(潘秀红), Jin Wei-Qing(金蔚青), Liu Yan(刘岩), and Ai Fei(艾飞). Chin. Phys. B, 2009, 18(2): 699-703.
[12] Absolute stability of the solidification interface in a laser resolidified Zn--2wt.%Cu hypoperitectic alloy
Su Yun-Peng (苏云鹏), Lin Xin (林鑫), Wang Meng (王猛), Xue Lei (薛蕾), Huang Wei-Dong (黄卫东). Chin. Phys. B, 2006, 15(7): 1631-1637.
[13] Metastable phase separation and rapid solidification of undercooled Co-Cu alloy under different conditions
Cao Chong-De (曹崇德). Chin. Phys. B, 2006, 15(4): 872-877.
[14] Effects of interface kinetics and anisotropy on the stability of the growing crystal face and dissolution face during crystallization from solution under microgravity
Zhu Zhen-He (朱振和), Hong Yong (洪勇), Ge Pei-Wen (葛培文), Yu Yu-De (俞育德). Chin. Phys. B, 2004, 13(12): 1982-1991.
[15] Microstructural evolution during containerless rapid solidification of Co-Si alloys
Yao Wen-Jing (姚文静), Wei Bing-Bo (魏炳波). Chin. Phys. B, 2003, 12(11): 1272-1282.
No Suggested Reading articles found!