|
|
Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries |
Jianxiang Gao(高健翔)1, Kai Sun(孙凯)1,†, Hao Guo(郭浩)1, Zhengyao Li(李正耀)1, Jianlin Wang(王建林)2, Xiaobai Ma(马小柏)1, Xuedong Bai(白雪东)2, and Dongfeng Chen(陈东风)1,‡ |
1 China Institute of Atomic Energy, Beijing 102413, China; 2 State Key Laboratory for Surface Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract P2-type layered oxides have been considered as promising cathode materials for Na-ion batteries, but the capacity decay resulting from the Na+/vacancy ordering and phase transformation limits their future large-scale applications. Herein, the impact of Li-doping in different layers on the structure and electrochemical performance of P2-type Na0.7Ni0.35Mn0.65O2 is investigated. It can be found that Li ions successfully enter both the Na and transition metal layers. The strategy of Li-doping can improve the cycling stability and rate capability of P2-type layered oxides, which promotes the development of high-performance Na-ion batteries.
|
Received: 13 January 2022
Revised: 22 April 2022
Accepted manuscript online: 28 April 2022
|
PACS:
|
82.45.Fk
|
(Electrodes)
|
|
88.80.ff
|
(Batteries)
|
|
71.20.Dg
|
(Alkali and alkaline earth metals)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12105372 and 51991344), President's Foundation of China Institute of Atomic Energy (Grant No. 16YZ202212000201), and Chinese Academy of Sciences (Grant No. XDB33000000). |
Corresponding Authors:
Kai Sun, Dongfeng Chen
E-mail: ksun@ciae.ac.cn;dongfeng@ciae.ac.cn
|
Cite this article:
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风) Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries 2022 Chin. Phys. B 31 098201
|
[1] Gao R M, Zheng Z J, Wang P F, Wang C Y, Ye H and Cao F F 2020 Energy Storage Mater. 30 9 [2] Li Y, Lu Y, Zhao C, Hu Y S, Titirici M M, Li H, Huang X and Chen L 2017 Energy Storage Mater. 7 130 [3] Yu J Z, Hu Y S, Li H, Huang X J and Chen L Q 2017 Acta Phys. Sin. 66 088201 (in Chinese) [4] Wei F, Zhang Q, Zhang P, Tian W, Dai K, Zhang L, Mao J and Shao G 2021 J. Electrochem. Soc. 168 050524 [5] Guo G C, Wang C, Ming B M, Luo S W, Su H, Wang B Y, Zhang M, Yu H J and Wang R Z 2018 Chin. Phys. B 27 118801 [6] Mu L Q, Hu Y S and Chen L Q 2015 Chin. Phys. B 24 038202 [7] Guo H, Avdeev M, Sun K, Ma X, Wang H, Hu Y and Chen D 2021 Chem. Eng. J. 412 128704 [8] Li Z Y, Gao R, Sun L, Hu Z and Liu X 2017 Electrochim. Acta 223 92 [9] Xu S Y, Wu X Y, Li Y M, Hu Y S and Chen L Q 2014 Chin. Phys. B 23 118202 [10] Lavela P, Klee R and Tirado J L 2021 Sustain. Energy Fuels 5 4095 [11] Wang J, Wang Y, Seo D H, Shi T, Chen S, Tian Y, Kim H and Ceder G 2020 Adv. Energy Mater. 10 1903968 [12] Wang L, Lu Y, Liu J, Xu M, Cheng J, Zhang D and Goodenough J B 2013 Angew. Chem. Int. Edit. 52 1964 [13] Wang L, Song J, Qiao R, Wray L A, Hossain M A, Chuang Y D, Yang W, Lu Y, Evans D, Lee J J, Vail S, Zhao X, Nishijima M, Kakimoto S and Goodenough J B 2015 J. Am. Chem. Soc. 137 2548 [14] Ren W, Qin M, Zhu Z, Yan M, Li Q, Zhang L, Liu D and Mai L 2017 Nano Lett. 17 4713 [15] Lu Y, Wang L, Cheng J and Goodenough J B 2012 Chem. Commun. 48 6544 [16] Luo W, Allen M, Raju V and Ji X 2014 Adv. Energy Mater. 4 1400554 [17] Han M H, Gonzalo E, Singh G and Rojo T 2015 Energy Environ. Sci. 8 81 [18] Kubota K, Kumakura S, Yoda Y, Kuroki K and Komaba S 2018 Adv. Energy Mater. 8 1703415 [19] Delmas C, Fouassier C and Hagenmuller P 1980 Physica B+C 99 81 [20] Yabuuchi N, Kubota K, Dahbi M and Komaba S 2014 Chem. Rev. 114 11636 [21] Pan H, Hu Y S and Chen L 2013 Energy Environ. Sci. 6 2338 [22] Zhang J, Wang W, Wang W, Wang S and Li B 2019 ACS Appl. Mater. Interfaces 11 22051 [23] Jung Y H, Christiansen A S, Johnsen R E, Norby P and Kim D K 2015 Adv. Funct. Mater. 25 3227 [24] Wen Y, Wang B, Zeng G, Nogita K, Ye D and Wang L 2015 Chem. Asian J. 10 661 [25] Lu Z and Dahn J R 2001 J. Electrochem. Soc. 148 A1225 [26] Wang J, Liu H, Yang Q, Hu B, Geng F, Zhao C, Lin Y and Hu B 2020 ACS Appl. Mater. Interfaces 12 34848 [27] Li Z, Kong W, Yu Y, Yang W, Yang J and Liu X 2021 J. Phys. Chem. C 125 8105 [28] Tang K, Huang Y, Xie X, Cao S, Liu L, Liu H, Luo Z, Wang Y, Chang B, Shu H and Wang X 2020 Chem. Eng. J. 399 125725 [29] Li Z Y, Ma X, Guo H, He L, Li Y, Wei G, Sun K and Chen D 2021 ACS Appl. Energy Mater. 4 5687 [30] Liu K, Tan S, Moon J, Jafta C J, Li C, Kobayashi T, Lyu H, Bridges C A, Men S, Guo W, Sun Y, Zhang J, Paranthaman M P, Sun X G and Dai S 2020 Adv. Energy Mater. 10 2070087 [31] Jo J H, Choi J U, Konarov A, Yashiro H, Yuan S, Shi L, Sun Y K and Myung S T 2018 Adv. Funct. Mater. 28 1705968 [32] Yang L, Li X, Liu J, Xiong S, Ma X, Liu P, Bai J, Xu W, Tang Y, Hu Y Y, Liu M and Chen H 2019 J. Am. Chem. Soc. 141 6680 [33] Xu J, Lee D H, Clement R J, Yu X, Leskes M, Pell A J, Pintacuda G, Yang X Q, Grey C P and Meng Y S 2014 Chem. Mater. 26 1260 [34] Jin T, Wang P F, Wang Q C, Zhu K, Deng T, Zhang J, Zhang W, Yang X Q, Jiao L and Wang C 2020 Angew. Chem. Int. Ed. 59 14511 [35] Zhao C, Yao Z, Wang Q, Li H, Wang J, Liu M, Ganapathy S, Lu Y, Cabana J, Li B, Bai X, Aspuru-Guzik A, Wagemaker M, Chen L and Hu Y S 2020 J. Am. Chem. Soc. 142 5742 [36] Wang Y, Hu G, Peng Z, Cao Y, Lai X, Qi X, Gan Z, Li W, Luo Z and Du K 2018 J. Power Sources 396 639 [37] Ding Z, Liu Y, Tang Q, Jiang Q, Lu J, Xiao Z, Yao P, Monasterio M, Wu J and Liu X 2018 Electrochim. Acta 292 871 [38] Rodríguez-Carvajal J 1993 Physica B 192 55 [39] Xie Y, Gabriel E, Fan L, Hwang I, Li X, Zhu H, Ren Y, Sun C, Pipkin J, Dustin M, Li M, Chen Z, Lee E and Xiong H 2021 Chem. Mater. 33 4445 [40] Zhao C, Wang Q, Yao Z, Wang J, Sánchez-Lengeling B, Ding F, Qi X, Lu Y, Bai X, Li B, Li H, Aspuru-Guzik A, Huang X, Delmas C, Wagemaker M, Chen L and Hu Y S 2020 Science 370 708 [41] Kim D, Kang S H, Slater M, Rood S, Vaughey J T, Karan N, Balasubramanian M and Johnson C S 2011 Adv. Energy Mater. 1 333 [42] Zheng X, Li P, Zhu H, Rui K, Zhao G, Shu J, Xu X, Sun W and Dou S X 2018 Energy Storage Mater. 15 257 [43] Lee D H, Xu J and Meng Y S 2013 Phys. Chem. Chem. Phys. 15 3304 [44] Wang H, Yang B, Liao X Z, Xu J, Yang D, He Y S and Ma Z F 2013 Electrochim. Acta 113 200 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|