Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 110503    DOI: 10.1088/1674-1056/abf4fc
GENERAL Prev   Next  

Physical generation of random numbers using an asymmetrical Boolean network

Hai-Fang Liu(刘海芳)1,2, Yun-Cai Wang(王云才)3,4, Lu-Xiao Sang(桑鲁骁)1,2, and Jian-Guo Zhang(张建国)1,2,†
1 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China;
2 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China;
3 Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangzhou 510006, China;
4 School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
Abstract  Autonomous Boolean networks (ABNs) have been successfully applied to the generation of random number due to their complex nonlinear dynamics and convenient on-chip integration. Most of the ABNs used for random number generators show a symmetric topology, despite their oscillations dependent on the inconsistency of time delays along links. To address this issue, we suggest an asymmetrical autonomous Boolean network (aABN) and show numerically that it provides large amplitude oscillations by using equal time delays along links and the same logical gates. Experimental results show that the chaotic features of aABN are comparable to those of symmetric ABNs despite their being made of fewer nodes. Finally, we put forward a random number generator based on aABN and show that it generates the random numbers passing the NIST test suite at 100 Mbits/s. The unpredictability of the random numbers is analyzed by restarting the random number generator repeatedly. The aABN may replace symmetrical ABNs in many applications using fewer nodes and, in turn, reducing power consumption.
Keywords:  autonomous Boolean networks      random numbers      chaos      unpredictability  
Received:  16 January 2021      Revised:  25 March 2021      Accepted manuscript online:  06 April 2021
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  64.60.aq (Networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61731014, 61671316, 61961136002, and 61927811) and the Fund from the Shanxi Scholarship Council of China (Grant No. 2017-key-2).
Corresponding Authors:  Jian-Guo Zhang     E-mail:  zhangjianguo@tyut.edu.cn

Cite this article: 

Hai-Fang Liu(刘海芳), Yun-Cai Wang(王云才), Lu-Xiao Sang(桑鲁骁), and Jian-Guo Zhang(张建国) Physical generation of random numbers using an asymmetrical Boolean network 2021 Chin. Phys. B 30 110503

[1] Yu F, Li L X, Tang Q, Cai S, Song Y and Xu Q 2019 Discrete Dyn. Nat. Soc. 2019 2545123
[2] Xu J and Dang L J 2019 Discret. Contin. Dyn. Syst.-Ser. S 12 1489
[3] Liu B L, Yang B and Su X H 2018 Information 9 86
[4] Lin Y, Wang F and Liu B 2018 J. Comput. Phys. 360 93
[5] Dang B J, Sun J, Zhang T, Wang S S, Zhao M, Liu K Q, Xu L Y, Zhu J D, Cheng C D, Bao L, Yang Y C, Wang H, Hao Y and Huang R 2019 IEEE Electron Dev. Lett. 40 1096
[6] Bae S G, Kim Y, Park Y and Kim C 2017 IEEE J. Solid-State Circuit 52 605
[7] Yao Y, Chen X, Kang W, Zhang Y G and Zhao W S 2019 IEEE Trans. Electron Dev. 67 2553
[8] L'Ecuyer P 2017 Winter Simulation Conference Proceedings, December 3-6, Las Vegas, USA, p. 202
[9] Saito A and Akihiro Y 2018 Chaos 28 103122
[10] Butler T, Durkan C, Goulding D, Slepneva S, Kelleher B, Hegarty S P and Huyet G 2016 Opt. Lett. 41 388
[11] Huang Z and Chen H G 2001 4th International Conference on ASIC, October 23-25, 2001, Shanghai, China, p. 862
[12] Petrie C S and Connelly J A 2000 IEEE Trans. Circ. Syst. Fund. Theor. Appl. 47 615
[13] Mathew S K, Srinivasan S, Anders M A, Kaul H, Hsu S K, Sheikh F, Agarwal A, Satpathy S and Krishnamurthy R K 2012 IEEE J. Solid-State Circuit 47 2807
[14] Wieczorek P Z and Golofit K 2014 IEEE Trans. Circuits Syst. I-Regul. Pap. 61 134
[15] Hata H and Ichiawa S 2012 IEICE Trans. Inf. Syst. E95D 426
[16] Guler U and Dundar G 2014 IEEE Trans. Circuits Syst. I-Regul. Pap. 61 712
[17] Guler U, Pusane A E and Dundar G 2017 Int. J. Electron 104 1465
[18] Beirami A and Nejati H 2013 IEEE Trans. Circuits Syst. Ⅱ-Express Briefs 60 446
[19] Dvorakova J 2012 Commun. Nonlinear Sci. Numer. Simul. 17 4649
[20] Zhang R, Cavalcante D S C H L D, Gao Z, Gauthier D J and Socolar J E S 2009 Phys. Rev. E 80 045202
[21] Singh J P, Roy B K and Wei Z C 2018 Chin. Phys. B 27 040503
[22] Gao T G, Chen G R, Chen Z Q and Cang S J 2016 Phys. Lett. A 361 78
[23] Li S Y, Huang S C, Yang C H and Ge Z M 2012 Nonlinear Dyn. 69 805
[24] Rosin D P, Rontani D and Gauthier D J 2013 Phys. Rev. E 87 040902
[25] Dong L H, Yang H and Zeng Y 2017 13th International Conference on Computational Intelligence and Security (CIS), December 15-18, 2017, Hong Kong, China, p. 243
[26] Ma L, Zhang J G, Li P, Xu H and Wang Y C 2018 J. Cent. South Univ. 49 888 (in Chinese)
[27] Park M, Rodgers J C and Lathrop D P 2015 Microelectron. J. 46 1364
[28] Zhang Q Q, Zhang J G, Li P, Guo Y Q and Wang Y C 2019 Journal on Communications 40 201 (in Chinese)
[29] Jia M M, Jiang H G and Li W J 2019 Acta Phys. Sin. 68 130503 (in Chinese)
[30] Xiang S Y, Pan W, Li N Q, Zhang L Y and Zhu H N 2013 Opt. Commun. 311 294
[31] Gong L S, Zhang J G, Sang L X, Liu H F and Wang Y C 2019 IEEE Trans. Circuits Syst. Ⅱ-Express Briefs 67 1854
[32] Zhou Y, Li C L, Li W, Li H M, Feng W and Qian K 2021 Nonlinear Dyn. 103 2043
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[7] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[8] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[9] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[10] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[11] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[12] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
[13] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[14] Resistance fluctuations in superconducting KxFe2-ySe2 single crystals studied by low-frequency noise spectroscopy
Hai Zi(子海), Yuan Yao(姚湲), Ming-Chong He(何明冲), Di Ke(可迪), Hong-Xing Zhan(詹红星), Yu-Qing Zhao(赵宇清), Hai-Hu Wen(闻海虎), and Cong Ren(任聪). Chin. Phys. B, 2021, 30(4): 047402.
[15] A multi-directional controllable multi-scroll conservative chaos generator: Modelling, analysis, and FPGA implementation
En-Zeng Dong(董恩增), Rong-Hao Li(李荣昊), and Sheng-Zhi Du(杜升之). Chin. Phys. B, 2021, 30(2): 020505.
No Suggested Reading articles found!