Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077104    DOI: 10.1088/1674-1056/ab8d9d
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases

Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良)
School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
Abstract  The optical absorption of exciton interstate transition in Zn1-xlMgxlO/ZnO/Zn1-xcMgxcO/ZnO/Zn1-xrMgxrO asymmetric double quantum wells (ADQWs) with mixed phases of zinc-blende and wurtzite in Zn1-xMgxO for 0.37< x < 0.62 is discussed. The mixed phases are taken into account by our weight model of fitting. The states of excitons are obtained by a finite difference method and a variational procedure in consideration of built-in electric fields (BEFs) and the Hartree potential. The optical absorption coefficients (OACs) of exciton interstate transition are obtained by the density matrix method. The results show that Hartree potential bends the conduction and valence bands, whereas a BEF tilts the bands and the combined effect enforces electrons and holes to approach the opposite interfaces to decrease the Coulomb interaction effects between electrons and holes. Furthermore, the OACs indicate a transformation between direct and indirect excitons in zinc-blende ADQWs due to the quantum confinement effects. There are two kinds of peaks corresponding to wurtzite and zinc-blende structures respectively, and the OACs merge together under some special conditions. The computed result of exciton interband emission energy agrees well with a previous experiment. Our conclusions are helpful for further relative theoretical studies, experiments, and design of devices consisting of these quantum well structures.
Keywords:  quantum well      mixed phase      exciton transition      direct and indirect exciton      optical absorption  
Received:  21 December 2019      Revised:  18 April 2020      Accepted manuscript online: 
PACS:  71.35.-y (Excitons and related phenomena)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  73.21.Fg (Quantum wells)  
  71.55.Gs (II-VI semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61764012).
Corresponding Authors:  Shi-Liang Ban     E-mail:  slban@imu.edu.cn

Cite this article: 

Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良) Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases 2020 Chin. Phys. B 29 077104

[1] Sato S and Satoh S 1999 Elctron. Lett. 35 1251
[2] Salhi A, Rouillard Y, Angellier J, Grech P and Vicet A 2004 Elctron. Lett. 40 424
[3] Simoyama T, Yoshida H, Kasai J I, Mozume T and Ishikawa H 2009 Appl. Phys. Lett. 94 101902
[4] Choy W C H, Li E and Weiss B 1998 IEEE J. Quantum Electron. 34 1846
[5] Zhang Y J, Zhang X H, Tang B, Tian C, Xu C Y, Dong H X and Zhou W H 2018 Nanoscale 10 14082
[6] Zhang X H, Zhang Y J, Dong H X, Tang B, Li D H, Tian C, Xu C Y and Zhou W H 2019 Nanoscale 11 4496
[7] Ju Z G, Shan C X, Yang C L, Zhang J Y, Yao B, Zhao D X, Shen D Z and Fan X W 2009 Appl. Phys. Lett. 94 101902
[8] Park S-H and Ahn D 2007 J. Cryst. Growth 301-302 353
[9] Yano M, Hashimoto K, Fujimoto K, Koike K, Sasa S, Inoue M, Uetsuji Y, Ohnishi Y T and Inaba K 2007 J. Cryst. Growth 301-302 353
[10] Takeuchi I, Yang W, Chang K S, Aronova M A, Venkatesan T, Vispute R D, and Bendersky L A 2004 J. Appl. Phys. 94 7336
[11] Fan X F, Sun H D, Shen Z X, Kuo J L and Lu Y M 2015 J. Nanomater. 2015 7
[12] Riane H, Mokaddem A, Temimi L, Doumi B, Bahlouli S and Hamdache F 2017 J. Adv. Manuf. Tech. 89 629
[13] Djelal A, Chaibi K, Tari N, Zitouni K and Kadri A 2017 Superlattice Microst. 109 81
[14] Zippel J, Heitsch S, Stölzel M, Müller A, Wenckstern H, Benndorf G, Lorenz M, Hochmuth H and Grundmann M 2010 J. Lumin. 130 520
[15] Segawa Y, Sun H D, Makino T, Kawasaki M and Koinuma H 2015 Phys. Status Solidi A 192 14
[16] Stachowicz M, Pietrzyk M A, Sajkowski J M, Przezdziecka E, Teisseyre H, Witkowski B, Alves E and Kozanecki A 2017 J. Lumin. 186 262
[17] Yu F M, Zhang L and Guo K 2011 Superlattice Microst. 50 128
[18] Gu Z, Zhu Z N, Wang M M, Wang Y Q, Wang M S, Qu Y and Ban S L 2017 Superlattice Microst. 102 391
[19] Song L Y, Han Z Q, Zan Y H and Ban S L 2019 Opt. Commun. 444 142
[20] Asgari A, Safa S and Mouchliadis L 2011 Superlattice Microst. 49 487
[21] Grigoryev P S, Kurdyubov A S, Kuznetsova M S, Ignatiev I V, Efimov Y P, Eliseev S A, Petrov V V, Lovtcius V A and Shapochkin P Y 2016 Superlattice Microst. 97 452
[22] Tan C M, Xu J M and Zukotynski S 1993 J. Appl. Phys. 73 2921
[23] Brounkov P, Benyattou N T and Guillot G 1996 J. Appl. Phys. 80 864
[24] Meng L, Zhang J, Li Q and Hou X 2015 J. Nanomater. 2015 7
[25] Xia C, Zhang H, An J, Wei S and Jia Y 2003 Phys. Rev. B 68 205314
[26] Senger R T and Bajaj K K 2003 Phys. Rev. B 68 205314
[27] Elangovan P, John Peter A and Kyoo Yoo C 2013 J. Lumin. 143 314
[28] Shi J J and Goldys E M 1999 IEEE T. Electron. Dev. 46 83
[29] Miranda G L, Mora-Ramos M E and Duque C A 2013 Physica B: Condens. Matter 409 78
[30] Gopal P and Spaldin N A 2006 J. Electron. Mater. 35 538
[31] Duan Y, Qin L, Tang G and Shi L 2008 Eur. Phys. J. B 66 201
[32] Furno E, Chiaria S, Penna M, Bellotti E and Goano M 2010 J. Electron. Mater. 39 936
[33] Tanaka H, Fujita S and Fujita S 2005 Appl. Phys. Lett. 86 192911
[34] Djelal A, Chaibi K, Tari N, Zitouni K and Kadri A 2017 Superlattice Microst. 109 81
[35] Xu Y N and Ching W Y 1991 Phys. Rev. B 43 4461
[36] Park S H and Ahn D 2007 Opt. Quantum Electron. 38 935
[37] Coli G and Bajaj K K 2001 Appl. Phys. Lett. 78 2861
[38] Su S C, Zhu H, Zhang L X, He M L, Zhao Z, Yu S F, Wang J N and Ling F C C 2013 Appl. Phys. Lett. 103 131104
[1] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[2] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[3] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[4] Improved thermal property of strained InGaAlAs/AlGaAs quantum wells for 808-nm vertical cavity surface emitting lasers
Zhuang-Zhuang Zhao(赵壮壮), Meng Xun(荀孟), Guan-Zhong Pan(潘冠中), Yun Sun(孙昀), Jing-Tao Zhou(周静涛), and De-Xin Wu(吴德馨). Chin. Phys. B, 2022, 31(3): 034208.
[5] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[6] Electron tunneling through double-electric barriers on HgTe/CdTe heterostructure interface
Liang-Zhong Lin(林亮中), Yi-Yun Ling(凌艺纭), Dong Zhang(张东), and Zhen-Hua Wu(吴振华). Chin. Phys. B, 2022, 31(11): 117201.
[7] Research of NO2 vertical profiles with look-up table method based on MAX-DOAS
Yingying Guo(郭映映), Suwen Li(李素文), Fusheng Mou(牟福生), Hexiang Qi(齐贺香), and Qijin Zhang(张琦锦). Chin. Phys. B, 2022, 31(1): 014212.
[8] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[9] GaSb-based type-I quantum well cascade diode lasers emitting at nearly 2-μm wavelength with digitally grown AlGaAsSb gradient layers
Yi Zhang(张一), Cheng-Ao Yang(杨成奥), Jin-Ming Shang(尚金铭), Yi-Hang Chen(陈益航), Tian-Fang Wang(王天放), Yu Zhang(张宇), Ying-Qiang Xu(徐应强), Bing Liu(刘冰), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2021, 30(9): 094204.
[10] Optical polarization characteristics for AlGaN-based light-emitting diodes with AlGaN multilayer structure as well layer
Lu Xue(薛露), Yi Li(李毅), Mei Ge(葛梅), Mei-Yu Wang(王美玉), and You-Hua Zhu(朱友华). Chin. Phys. B, 2021, 30(4): 047802.
[11] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[12] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[13] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[14] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[15] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
No Suggested Reading articles found!