Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054201    DOI: 10.1088/1674-1056/ab7b4c
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Trajectory engineering via a space-fractional Schrödinger equation with dynamic linear index potential

Yunji Meng(孟云吉)1, Youwen Liu(刘友文)2, Haijiang Lv(吕海江)1
1 School of Information Engineering, Huangshan University, Huangshan 245041, China;
2 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Abstract  We theoretically and numerically study the propagation dynamics of a Gaussian beam modeled by the fractional Schrödinger equation with different dynamic linear potentials. For the limited case α=1 (α is the Lévy index) in the momentum space, the beam suffers a frequency shift which depends on the applied longitudinal modulation and the involved chirp. While in the real space, by precisely controlling the linear chirp, the beam will exhibit two different evolution characteristics: one is the zigzag trajectory propagation induced by multi-reflection occurring at the zeros of spatial spectrum, the other is diffraction-free propagation. Numerical simulations are in full accordance with the theoretical results. Increase of the Lévy index not only results in the drift of those turning points along the transverse direction, but also leads to the delocalization of the Gaussian beam.
Keywords:  trajectory engineering, space-fractional Schrö      dinger equation, dynamic linear index potential  
Received:  09 October 2019      Revised:  26 December 2019      Published:  05 May 2020
PACS:  42.25.Bs (Wave propagation, transmission and absorption)  
  42.25.Fx (Diffraction and scattering)  
  42.30.Kq (Fourier optics)  
Fund: Project supported by the Natural Science Research Project of Anhui Provincal Education Department of China (Grant Nos. KJHS2018B01 and KJ2018A0407), the National Natural Science Foundation of China (Grant No. 11804112), the Natural Science Foundation of Anhui Province of China (Grant No. 1808085QA22), and Start-up Fund of Huangshan University, China (Grant No. 2015xkjq001).
Corresponding Authors:  Yunji Meng     E-mail:  meng_yunji@msn.com

Cite this article: 

Yunji Meng(孟云吉), Youwen Liu(刘友文), Haijiang Lv(吕海江) Trajectory engineering via a space-fractional Schrödinger equation with dynamic linear index potential 2020 Chin. Phys. B 29 054201

[1] Dai C Q, Wang Y Y, Fan Y and Yu D G 2018 Nonlinear Dyn. 92 1351
[2] Dai C Q, Fan Y and Wang Y Y 2019 Nonlinear Dyn. 98 489
[3] Wang Y Y, Dai C Q, Xu Y Q, Zheng J and Fan Y 2018 Nonlinear Dyn. 92 1261
[4] Yan Y Y and Liu W J 2019 Appl. Math. Lett. 98 171
[5] Peschel U, Pertsch T and Lederer F 1998 Opt. Lett. 23 1701
[6] Trompeter H, Pertsch T, Lederer F, Michaelis D, Streppel U, Brauer A and Peschel U 2006 Phys. Rev. Lett. 96 023901
[7] Makris K G, Christodoulides D N, Peleg O, Segev M and Kip D 2008 Opt. Express 16 10309
[8] Dreisow F, Szameit A, Heinrich M, Nolte S, Tünnermann A, Ornigotti M and Longhi S 2009 Phys. Rev. A 79 055802
[9] Della Valle G, Savoini M, Ornigotti M, Laporta P, Foglietti V, Finazzi M, Duo L and Longhi S 2009 Phys. Rev. Lett. 102 180402
[10] Szameit A, Kartashov Y V, Dreisow F, Heinrich M, Pertsch. T, Nolte S, Tünnermann A, Vysloukh V A, Lederer F and Torner L 2009 Phys. Rev. Lett. 102 153901
[11] Szameit A, Garanovich I L, Heinrich M, Sukhorukov A A, Dreisow F, Pertsch T, Nolte S, Tünnermann A and Kivshar Y S 2008 Phys. Rev. Lett. 101 203902
[12] Ablowitz M J and Musslimani Z H 2001 Phys. Rev. Lett. 87 254102
[13] Szameit A, Garanovich I L, Heinrich M, Minovich A, Dreisow F, Sukhorukov A A, Pertsch. T, Neshev D N, Nolte S, Krolikowski W, Tünnermann A, Mitchell A and Kivshar Y S 2008 Phys. Rev. A 78 031801
[14] Matuszewski M, Garanovich I L and Sukhorukov A A 2010 Phys. Rev. A 81 043833
[15] Garanovich I L, Longhi S, Sukhorukov A A and Kivshar Y S 2012 Phys. Reports. 518 1
[16] Wen J M, Zhang Y and Xiao M 2013 Adv. Opt. Photon. 5 83
[17] Rokhinson L P, Liu X Y and Furdyna J K 2012 Nat. Phys. 8 795
[18] Laskin N 2002 Phys. Rev. E 66 056108
[19] Dong J P and Xu M Y 2007 J. Math. Phys. 48 072105
[20] Longhi S 2015 Opt. Lett. 40 1117
[21] Zhang Y Q, Liu X, Belić M R, Zhong W P, Zhang Y P and Xiao M 2015 Phys. Rev. Lett. 115 180403
[22] Zhang Y Q, Zhong H, Belić M R, Zhu Y, Zhong W, Zhang Y P, Christodoulides D N and Xiao M 2016 Laser. Photon. Rev. 10 526
[23] Zhang Y Q, Zhong H, Belić M R, Ahmed N, Zhang Y P and Xiao M 2016 Sci. Rep. 6 23645
[24] Zhang Y Q, Wang R, Zhong H, Zhang J, Belić M R and Zhang Y P 2017 Sci. Rep. 7 17872
[25] Huang C M and Dong L W 2017 Sci. Rep. 7 5442
[26] Huang C M, Shang C, Li J, Dong L W and Ye F W 2019 Opt. Express 27 6259
[27] Huang X W, Deng Z X and Fu X Q 2017 J. Opt. Soc. Am. B 34 976
[28] Huang C M and Dong L W 2016 Opt. Lett. 41 5636
[29] Yao X K and Liu X M 2018 Photon. Research. 6 875
[30] Xiao J, Tian Z X, Huang C M and Dong L W 2018 Opt. Express. 26 2650
[31] Yao X K and Liu X M 2018 Opt. Lett. 43 5749
[32] Wang Q, Li J Z, Zhang L F and Xie W X 2018 Europhys. Lett. 122 64001
[33] Zhang Y Q, Wang R, Zhong H, Zhang J W, Belić M R and Zhang Y P 2017 Opt. Express. 25 32401
[34] Zhang F, Wang Y and Li L 2018 Opt. Express 26 23740
[35] Efremidis N K 2011 Opt. Lett. 26 3006
[1] A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure
Xiangxian Wang(王向贤), Jiankai Zhu(朱剑凯), Yueqi Xu(徐月奇), Yunping Qi(祁云平), Liping Zhang(张丽萍), Hua Yang(杨华), and Zao Yi(易早). Chin. Phys. B, 2021, 30(2): 024207.
[2] Broadband absorption enhancement with ultrathin MoS2 film in the visible regime
Jun Wu(吴俊). Chin. Phys. B, 2021, 30(2): 024208.
[3] Tunable dual-band terahertz graphene absorber with guided mode resonances
Jun Wu(吴俊), Xia-Yin Liu(刘夏吟), and Zhe Huang(黄喆). Chin. Phys. B, 2021, 30(1): 014202.
[4] Controlling the light wavefront through a scattering medium based on direct digital frequency synthesis technology
Yuan Yuan(袁园), Min-Yuan Sun(孙敏远), Yong Bi(毕勇), Wei-Nan Gao(高伟男), Shuo Zhang(张硕), and Wen-Ping Zhang(张文平). Chin. Phys. B, 2021, 30(1): 014209.
[5] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[6] Thermal tunable one-dimensional photonic crystals containing phase change material
Yuanlin Jia(贾渊琳), Peiwen Ren(任佩雯), and Chunzhen Fan(范春珍)†. Chin. Phys. B, 2020, 29(10): 104210.
[7] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[8] Generation of orbital angular momentum and focused beams with tri-layer medium metamaterial
Zhi-Chao Sun(孙志超), Meng-Yao Yan(闫梦瑶), and Bi-Jun Xu(徐弼军)†. Chin. Phys. B, 2020, 29(10): 104101.
[9] Propagation properties of radially polarized Pearcey-Gauss vortex beams in free space
Xinpeng Chen(陈鑫鹏), Chuangjie Xu(许创杰), Qian Yang(杨芊), Zhiming Luo(罗智明), Xixian Li(李希贤), Dongmei Deng(邓冬梅). Chin. Phys. B, 2020, 29(6): 064202.
[10] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[11] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[12] Properties of off-axis hollow Gaussian-Schell model vortex beam propagating in turbulent atmosphere
Yan-Song Song(宋延嵩), Ke-Yan Dong(董科研), Shuai Chang(常帅), Yan Dong(董岩), Lei Zhang(张雷). Chin. Phys. B, 2020, 29(6): 064213.
[13] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
[14] Paraxial propagation of cosh-Airy vortex beams in chiral medium
Xiao-Jin Yang(杨小锦), Zhen-Sen Wu(吴振森), Tan Qu(屈檀). Chin. Phys. B, 2020, 29(3): 034201.
[15] A hybrid method of solving near-zone composite eletromagnetic scattering from targets and underlying rough surface
Xi-Min Li(李西敏), Jing-Jing Li(李晶晶), Qian Gao(高乾), Peng-Cheng Gao(高鹏程). Chin. Phys. B, 2020, 29(2): 024202.
No Suggested Reading articles found!