Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 067101    DOI: 10.1088/1674-1056/26/6/067101

Study of structural and magnetic properties of Fe80P9B11 amorphous alloy by ab initio molecular dynamic simulation

Li Zhu(朱力), Yin-Gang Wang(王寅岗), Cheng-Cheng Cao(曹成成), Yang Meng(孟洋)
College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
Abstract  The structural and magnetic properties of Fe80P9B11 amorphous alloy are investigated through ab initio molecular dynamic simulation. The structure evolution of Fe80P9B11 amorphous alloy can be described in the framework of topological fluctuation theory, and the fluctuation of atomic hydrostatic stress gradually decreases upon cooling. The left sub peak of the second peak of Fe-B partial pair distribution functions (PDFs) becomes pronounced below the glass transition temperature, which may be the major reason why B promotes the glass formation ability significantly. The magnetization mainly originates from Fe 3d states, while small contribution results from metalloid elements P and B. This work may be helpful for developing Fe-based metallic glasses with both high saturation flux density and glass formation ability.
Keywords:  amorphous alloy      ab initio molecular dynamic simulation      local atomic structure      magnetic properties     
Received:  11 January 2017      Published:  05 June 2017
PACS:  71.15.Pd (Molecular dynamics calculations (Car-Parrinello) and other numerical simulations)  
  75.50.Kj (Amorphous and quasicrystalline magnetic materials) (Metallic glasses)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51571115) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Corresponding Authors:  Yin-Gang Wang     E-mail:

Cite this article: 

Li Zhu(朱力), Yin-Gang Wang(王寅岗), Cheng-Cheng Cao(曹成成), Yang Meng(孟洋) Study of structural and magnetic properties of Fe80P9B11 amorphous alloy by ab initio molecular dynamic simulation 2017 Chin. Phys. B 26 067101

[1] Babilas R 2015 Mater. Charact. 107 7
[2] Bhattacharya S, Lass E A, Poon S J, Shiflet J and Rawlings M 2012 J. Appl. Phys. 111 063906
[3] Zhou S X, Dong B S, Qin J Y, Li D R, Pan S P, Bian X F and Li Z B 2012 J. Appl. Phys. 112 023514
[4] Wang H, Hu T and Zhang T 2013 Physica B 411 161
[5] Gu Y, Chao Y S and Zhang Y H 2012 Chin. Phys. B 21 127805
[6] Han M G, Guo W, Wu Y H, Liu M and Magundappa L H 2014 Chin. Phys. B 23 083301
[7] Cheng Y Q and Ma E 2011 Prog. Mater. Sci. 56 379
[8] Egami T 2011 Prog. Mater. Sci. 56 637
[9] Li J W, Xiao S Y, Xie X X, Yu H, Zhang H L, Zhan Y and An H L 2015 Chin. Phys. Lett. 32 028702
[10] Feng Y X, Chen J, Li X Z and Wang E G 2016 Chin. Phys. B 25 013104
[11] Malozemoff A P, Williams A R and Moruzzi V L 1984 Phys. Rev. B 29 1620
[12] Corb B W, O'Handley R C and Grant N J 1982 J. Appl. Phys. 53 7728
[13] Rahman G, Kim I G, Bhadeshia H K D H and Freeman A J 2010 Phys. Rev. B 81 184423
[14] Kiss L F, Kemeny T, Bednarc J, Gamcova J and Liermann H P 2016 Phys. Rev. B 93 214424
[15] Wang Y C, Takeuchi A, Makino A, Liang Y Y and Kawazoe Y 2014 J. Appl. Phys. 115 173910
[16] Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15
[17] Blochl P E 1994 Phys. Rev. B 50 17953
[18] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[19] Nosé S 1984 J. Chem. Phys. 81 511
[20] Wang Y C, Takeuchi A, Makino A, Liang Y and Kawozoe Y 2015 J. Appl. Phys. 117 17B705
[21] Egami T, Poon S J, Zhang Z and Keppens V 2007 Phys. Rev. B 76 024203
[22] Hui X, Fang H Z, Chen G L, Shang S L, Wang Y, Qin J Y and Liu Z K 2009 Acta Mater. 57 376
[23] Xiong L H, Lou H B, Wang X D, Debela T T, Cao Q P, Zhang D X, Wang S Y, Wang C Z and Jiang J Z 2014 Acta Mater. 68 1
[24] Liu X J, Xu Y, Hui X, Lu Z P, Li F, Chen G L, Lu J and Liu C T 2010 Phys. Rev. Lett. 105 155501
[25] Pan S P, Qin J Y, Wang W M and Gu T K 2011 Phys. Rev. B 84 092201
[26] Ding J, Ma E, Asta M and Ritchie R O 2015 Sci. Rep. 5 17429
[27] Zhang W B, Li Q and Duan H M 2015 J. Appl. Phys. 117 104901
[28] Dai J, Wang Y G, Yang L, Xia G T, Zeng Q S and Lou H B 2017 Scripta Mater. 127 88
[29] Lashgari H R, Chu D, Xie S S, Sun H D, Ferry M and Li S 2014 J. Non-Cryst. Solids 391 61
[30] Wang Y C, Zhang Y, Takeuchi A, Makino A, Liang Y Y and Kawazoe Y 2015 IEEE Trans. Magn. 51 2006504
[31] Bakonyi I 2012 J. Magn. Magn. Mater. 324 3961
[1] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[2] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
[3] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[4] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[5] Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers
Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫). Chin. Phys. B, 2020, 29(6): 067701.
[6] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[7] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[8] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(10): 107504.
[9] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[10] Off-axis electron holography of manganite-based heterojunctions: Interface potential and charge distribution
Zhi-Bin Ling(令志斌), Gui-Ju Liu(刘桂菊), Cheng-Peng Yang(杨成鹏), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜). Chin. Phys. B, 2019, 28(4): 046101.
[11] Enhanced structural and magnetic properties of microwave sintered Li-Ni-Co ferrites prepared by sol-gel method
Nandeibam Nilima, M Maisnam, Sumitra Phanjoubam. Chin. Phys. B, 2019, 28(2): 026101.
[12] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[13] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[14] Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes
Meng Du(杜萌), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Zhong-Po Zhou(周忠坡), Shuo-Xue Jin(靳硕学), Bao-Yi Wang(王宝义). Chin. Phys. B, 2018, 27(2): 027805.
[15] Ab initio molecular dynamics simulations of nano-crystallization of Fe-based amorphous alloys with early transition metals
Yao-Cen Wang(汪姚岑), Yan Zhang(张岩), Yoshiyuki Kawazoe, Jun Shen(沈军), Chong-De Cao(曹崇德). Chin. Phys. B, 2018, 27(11): 116401.
No Suggested Reading articles found!