Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 023301    DOI: 10.1088/1674-1056/23/2/023301

Accurate equilibrium inversion barrier of ammonia by extrapolation to the one-electron basis set limit

Li Yong-Qing, Song Peng, Ma Feng-Cai
Department of Physics, Liaoning University, Shenyang 110036, China
Abstract  A scheme based on treating uniform singlet-pair and triplet-pair interactions is suggested to extrapolate electron correlation energy of ammonia, calculated at two basis-set levels of ab initio theory in the infinite one-electron basis-set limit. The dual-level method is tested on the extrapolation of the full correlation in coupled-cluster singles and doubles and in the case also a noniterative perturbative correction for connected triple energies for the C3v and D3h structures of ammonia, with correlation-consistent basis sets of the type cc-pVXZ (X=D,T,Q,5,6) and aug-cc-pVXZ (X=D,T,Q,5). For testing and comparison purposes, the energies reported by Klopper [J. Comput. Chem. 22 1306 (2001)] have been taken. From a corresponding extrapolation of CCSD(T)/AVXZ energies for X =4, 5, we obtain total inversion barriers of 1833.87 cm-1/1832.33 cm-1 for the two/three-parameter extrapolation rules, which are in good agreement with other theoretical extrapolation and empirical values in the literature.
Keywords:  inversion barrier      ammonia      complete basis set limit      low-cost  
Received:  25 April 2013      Revised:  22 May 2013      Accepted manuscript online: 
PACS:  33.15.Hp (Barrier heights (internal rotation, inversion, rotational isomerism, conformational dynamics))  
  31.15.vq (Electron correlation calculations for polyatomic molecules)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274149 and 11374353), the Natural Science Foundation of Liaoning Province, China (Grant No. 20121032), the Scientific Research Foundation for Doctors of Liaoning University,the Natural Science Foundation of Liaoning University, and the Program of Shenyang Key Laboratory of Optoelectronic Materials and Technology, China (Grant No. F12-254-1-00).
Corresponding Authors:  Li Yong-Qing, Ma Feng-Cai     E-mail:;
About author:  33.15.Hp; 31.15.Vq

Cite this article: 

Li Yong-Qing, Song Peng, Ma Feng-Cai Accurate equilibrium inversion barrier of ammonia by extrapolation to the one-electron basis set limit 2014 Chin. Phys. B 23 023301

[1] Léonad C, Handy N C, Carter S and Bowman J M 2002 Spectrochimica Acta Part A 58 825
[2] Dewar M J S and Shanshal M 1969 J. Am. Chem. Soc. 91 3654
[3] Rauk A, Allen L C and Clementi E 1970 J. Chem. Phys. 52 4133
[4] Botschwina P 1987 J. Chem. Phys. 87 1453
[5] Spirko V and Kraemer W P 1989 J. Mol. Spectrosc. 133 331
[6] East A L L and Radom L J 1996 J. Mol. Struct. 376 437
[7] Jensen F 1996 Chem. Phys. Lett. 261 633
[8] Lee J S 1997 J. Phys. Chem. 101 8762
[9] Pesinen J, Minani A and Halonen L 2001 J. Chem. Phys. 115 1243
[10] Léonad C, Carter S and Handy N C 2003 Chem. Phys. Lett. 370 360
[11] Csázár A G, Allen W D and Schaefer H F 1998 J. Chem. Phys. 108 9751
[12] Martin J M L, Lee T J and Taylor P R 1992 J. Chem. Phys. 97 8361
[13] Klopper W, Samson C C M, Tarczay G and Császár A G 2001 J. Comput. Chem. 13 1306
[14] Lin H, Thiel W, Yurchenko S N, Carvajal M and Jensen P 2002 J. Chem. Phys. 117 11265
[15] Rush D and Wiberg K 1997 J. Phys. Chem. A 101 3143
[16] Wormer P, Olthof E, Engeln R and Reuss J 1993 Chem. Phys. 178 189
[17] Bunker P, Kraemer W and Špirko V 1984 Can. J. Phys. 62 1801
[18] Halpern A M and Glendening E D 2001 Chem. Phys. Lett. 333 391
[19] Vaida V, McCarthy M I, Engelking P C, Rosmus P, Werner H J and Botschwina P 1987 J. Chem. Phys. 86 6677
[20] Spirko V 1983 J. Mol. Spectrosc. 101 30
[21] Yang C L, Wang M S, Liu W W, Zhang Z H and Ma X G 2013 Chin. Phys. B 22 063102
[22] Bai M M, Ge M H, Yang H and Zheng Y J 2012 Chin. Phys. B 21 123401
[23] Li H, Zheng B, Yin J Q and Meng Q T 2011 Chin. Phys. B 20 123401
[24] Li Y Q, Song Y Z, Song P, Li Y Z, Ding Y, Sun M T and Ma F C 2012 J. Chem. Phys. 136 194705
[25] Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 6669
[26] Varandas A J C 2007 J. Chem. Phys. 126 244105
[27] Varandas A J C 2000 J. Chem. Phys. 113 8880
[28] Dunning T H Jr 1989 J. Chem. Phys. 90 1007
[29] Feller D 1992 J. Chem. Phys. 96 6104
[30] Li Y Q, Yuan J C, Chen M D, Ma F C and Sun M T 2013 J. Comput. Chem. 34 1686
[31] Xantheas S S and Dunning T H Jr 1993 J. Phys. Chem. 97 18
[32] Halkier A, Helgaker T, Jfrgensen P, Klopper W and Olsen J 1999 Chem. Phys. Lett. 302 437
[33] Jensen F 2005 Theor. Chim. Acta 113 267
[34] Petersson G A, Malick D K, Frisch M, J and Braunstein M 2005 J. Chem. Phys. 123 074111
[35] Karton A and Martin J M L 2006 Theor. Chim. Acta 115 330
[36] Feller D 1993 J. Chem. Phys. 98 7059
[37] Petersson K A, Woon D F and Dunning T H Jr 1993 J. Chem. Phys. 100 7410
[38] Varandas A J C 2007 Chem. Phys. Lett. 443 398
[39] Martin J M L and Taylor P R 1997 J. Chem. Phys. 105 8620
[40] Lee J S 2000 J. Chem. Phys. 112 10746
[41] Li Y Q and Varandas A J C 2010 J. Phys. Chem. A 114 9644
[42] Li Y Q and Varandas A J C 2012 Int. J. Quantum Chem. 112 2932
[1] First-principles calculations of K-shell x-ray absorption spectra for warm dense ammonia
Zi Li(李孜), Wei-Jie Li(李伟节), Cong Wang(王聪), Dafang Li(李大芳), Wei Kang(康炜), Xian-Tu He(贺贤土), and Ping Zhang(张平). Chin. Phys. B, 2021, 30(5): 057102.
[2] Exploring FeSe-based superconductors by liquid ammonia method
Ying Tian-Ping, Wang Gang, Jin Shi-Feng, Shen Shi-Jie, Zhang Han, Zhou Ting-Ting, Lai Xiao-Fang, Wang Wan-Yan, Chen Xiao-Long. Chin. Phys. B, 2013, 22(8): 087412.
[3] Computer study of the water–ammonia clusters formation and their dielectric properties
Alexander Galashev. Chin. Phys. B, 2013, 22(7): 073601.
[4] Synthesis of flower-shape clustering GaN nanorods by ammoniating Ga2O3 films
Xue Shou-Bin, Zhuang Hui-Zhao, Xue Cheng-Shan, Hu Li-Jun, Li Bao-Li, Zhang Shi-Ying. Chin. Phys. B, 2007, 16(5): 1405-1409.
No Suggested Reading articles found!