Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100306    DOI: 10.1088/1674-1056/20/10/100306
GENERAL Prev   Next  

Lower bound for the security of differential phase shift quantum key distribution against a one-pulse-attack

Bao Wan-Sua, Yin Zhen-Qiangb, Wang Shuangb, Guo Guang-Canb, Han Zheng-Fub, Li Hong-Weic
a Electronic Technology Institute, Information Engineer University, Zhengzhou 450004, China; b Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; c Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; Electronic Technology Institute, Information Engineer University, Zhengzhou 450004, China
Abstract  Quantum key distribution is the art of sharing secret keys between two distant parties, and has attracted a lot of attention due to its unconditional security. Compared with other quantum key distribution protocols, the differential phase shift quantum key distribution protocol has higher efficiency and simpler apparatus. Unfortunately, the unconditional security of differential phase shift quantum key distribution has not been proved. Utilizing the sharp continuity of the von Neuman entropy and some basic inequalities, we estimate the upper bound for the eavesdropper Eve's information. We then prove the lower bound for the security of the differential phase shift quantum key distribution protocol against a one-pulse attack with Devatak-Winter's secret key rate formula.
Keywords:  lower bound      differential phase shift      quantum key distribution  
Received:  11 February 2011      Revised:  28 April 2011      Published:  15 October 2011
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Fundamental Research Program of China (Grant No. 2006CB921900), National Natural Science Foundation of China (Grant Nos. 60537020 and 60621064), and the Innovation Funds of the Chinese Academy of Sciences.

Cite this article: 

Li Hong-Wei, Yin Zhen-Qiang, Wang Shuang, Bao Wan-Su, Guo Guang-Can, Han Zheng-Fu Lower bound for the security of differential phase shift quantum key distribution against a one-pulse-attack 2011 Chin. Phys. B 20 100306

[1] Xu F X, Wang S, Han Z F and Guo G C 2010 Chin. Phys. B 19 100312
[2] Liu Y, Wu Q L, Han Z F, Dai Y M and Guo G C 2010 Chin. Phys. B 19 080308
[3] Wang H, Yan L S, Pan W, Luo B, Guo Z and Xu M F 2011 Acta Phys. Sin. 60 020304 (in Chinese)
[4] Inoue K, Waks E and Yamamoto Y 2003 Phys. Rev. Lett. 89 037902
[5] Inoue K, Waks E and Yamamoto Y 2003 Phys. Rev. A 68 022317
[6] Jiao R Z, Feng C X and Ma H Q 2009 Chin. Phys. B 18 915
[7] Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K and Yamamoto Y 2007 Nature Photonics 1 343
[8] Waks E, Takesue H and Yamamoto Y 2006 Phys. Rev. A 73 012344
[9] Wen K, Tamaki K and Yamamoto Y 2009 Phys. Rev. Lett. 103 170503
[10] Branciard C, Gisin N and Scarani V 2008 New J. Phys. 10 013031
[11] Devetak I and Winter A 2005 Proc. R. Soc. Lond. A 461 207
[12] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp. 510-518
[13] Audenaert K M R 2007 J. Phys. A: Math. Theor. 40 8127
[1] One-decoy state reference-frame-independent quantum key distribution
Xiang Li(李想), Hua-Wei Yuan(远华伟), Chun-Mei Zhang(张春梅), Qin Wang(王琴). Chin. Phys. B, 2020, 29(7): 070303.
[2] Hybrid linear amplifier-involved detection for continuous variable quantum key distribution with thermal states
Yu-Qian He(贺宇千), Yun Mao(毛云), Hai Zhong(钟海), Duang Huang(黄端), Ying Guo(郭迎). Chin. Phys. B, 2020, 29(5): 050309.
[3] Reconciliation for CV-QKD using globally-coupled LDPC codes
Jin-Jing Shi(石金晶), Bo-Peng Li(李伯鹏), Duan Huang(黄端). Chin. Phys. B, 2020, 29(4): 040301.
[4] Reference-frame-independent quantum key distribution with an untrusted source
Jia-Ji Li(李家骥), Yang Wang(汪洋), Hong-Wei Li(李宏伟), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(3): 030303.
[5] Performance analysis of continuous-variable measurement-device-independent quantum key distribution under diverse weather conditions
Shu-Jing Zhang(张淑静), Chen Xiao(肖晨), Chun Zhou(周淳), Xiang Wang(汪翔), Jian-Shu Yao(要建姝), Hai-Long Zhang(张海龙), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2020, 29(2): 020301.
[6] Attacking a high-dimensional quantum key distribution system with wavelength-dependent beam splitter
Ge-Hai Du(杜舸海), Hong-Wei Li(李宏伟), Yang Wang(汪洋), Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2019, 28(9): 090301.
[7] Temperature effects on atmospheric continuous-variable quantum key distribution
Shu-Jing Zhang(张淑静), Hong-Xin Ma(马鸿鑫), Xiang Wang(汪翔), Chun Zhou(周淳), Wan-Su Bao(鲍皖苏), Hai-Long Zhang(张海龙). Chin. Phys. B, 2019, 28(8): 080304.
[8] Proof-of-principle experimental demonstration of quantum secure imaging based on quantum key distribution
Yi-Bo Zhao(赵义博), Wan-Li Zhang(张万里), Dong Wang(王东), Xiao-Tian Song(宋萧天), Liang-Jiang Zhou(周良将), Chi-Biao Ding(丁赤飚). Chin. Phys. B, 2019, 28(10): 104203.
[9] Finite-size analysis of continuous-variable quantum key distribution with entanglement in the middle
Ying Guo(郭迎), Yu Su(苏玉), Jian Zhou(周健), Ling Zhang(张玲), Duan Huang(黄端). Chin. Phys. B, 2019, 28(1): 010305.
[10] Finite-size analysis of eight-state continuous-variable quantum key distribution with the linear optics cloning machine
Hang Zhang(张航), Yu Mao(毛宇), Duan Huang(黄端), Ying Guo(郭迎), Xiaodong Wu(吴晓东), Ling Zhang(张玲). Chin. Phys. B, 2018, 27(9): 090307.
[11] Controlling a sine wave gating single-photon detector by exploiting its filtering loophole
Lin-Xi Feng(冯林溪), Mu-Sheng Jiang(江木生), Wan-Su Bao(鲍皖苏), Hong-Wei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2018, 27(8): 080305.
[12] Continuous-variable quantum key distribution based on continuous random basis choice
Weiqi Liu(刘维琪), Jinye Peng(彭进业), Peng Huang(黄鹏), Shiyu Wang(汪诗寓), Tao Wang(王涛), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(7): 070305.
[13] Practical security of continuous-variable quantum key distribution under finite-dimensional effect of multi-dimensional reconciliation
Yingming Zhou(周颖明), Xue-Qin Jiang(蒋学芹), Weiqi Liu(刘维琪), Tao Wang(王涛), Peng Huang(黄鹏), Guihua Zeng(曾贵华). Chin. Phys. B, 2018, 27(5): 050301.
[14] Passive round-robin differential-quadrature-phase-shift quantum key distribution scheme with untrusted detectors
Hongwei Liu(刘宏伟), Wenxiu Qu(屈文秀), Tianqi Dou(窦天琦), Jipeng Wang(王吉鹏), Yong Zhang(张勇), Haiqiang Ma(马海强). Chin. Phys. B, 2018, 27(10): 100309.
[15] Improved quantum randomness amplification with finite number of untrusted devices based on a novel extractor
Ming-Feng Xu(徐明峰), Wei Pan(潘炜), Lian-Shan Yan(闫连山), Bin Luo(罗斌), Xi-Hua Zou(邹喜华), Peng-Hua Mu(穆鹏华), Li-Yue Zhang(张力月). Chin. Phys. B, 2018, 27(1): 010305.
No Suggested Reading articles found!