Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 064701    DOI: 10.1088/1674-1056/21/6/064701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analysing the structure of the optical path length of a supersonic mixing layer by using wavelet methods

Gao Qiong(高穹)a)†, Yi Shi-He(易仕和)b), Jiang Zong-Fu(姜宗福)a), Zhao Yu-Xin(赵玉新)b), and Xie Wen-Ke(谢文科)a)
a. College of Photon-Electron Science and Engineering, National University of Defense Technology, Changsha 410073, China;
b. College of Aerospace and Material Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  The nano-particle-based planar laser scattering (NPLS) technique is used to measure the density distribution in the supersonic mixing layer of the convective Mach number 0.12, and the optical path difference (OPL), which is quite crucial for the study of aero-optics, is obtained by post processing. Based on the high spatiotemporal resolutions of the NPLS, the structure of the OPL is analysed using wavelet methods. The coherent structures of the OPL are extracted using three methods, including the methods of thresholding the coefficients of the orthogonal wavelet transform and the wavelet packet transform, and preserving a number of wavelet packet coefficients with the largest amplitudes determined by the entropy dimension. Their performances are compared, and the method using the wavelet packet is the best. Based on the viewpoint of multifractals, we study the OPL by the wavelet transform maxima method (WTMM), and the result indicates that its scaling behaviour is evident.
Keywords:  optical path difference      aero-optics      supersonic mixing layer      wavelet      coherent structures      scaling behavior  
Received:  17 October 2011      Revised:  06 December 2011      Accepted manuscript online: 
PACS:  47.40.Ki (Supersonic and hypersonic flows)  
  47.80.Jk (Flow visualization and imaging)  
  47.53.+n (Fractals in fluid dynamics)  
  42.25.Dd (Wave propagation in random media)  
Fund: Projected supported by the Innovation Research Foundations for Postgraduates of National University of Defense Technology and Hunan Province, and the National Natural Science Foundation of China (Grant No. 61008037).
Corresponding Authors:  Gao Qiong     E-mail:  gaoqiong1980@126.com

Cite this article: 

Gao Qiong(高穹), Yi Shi-He(易仕和), Jiang Zong-Fu(姜宗福), Zhao Yu-Xin(赵玉新), and Xie Wen-Ke(谢文科) Analysing the structure of the optical path length of a supersonic mixing layer by using wavelet methods 2012 Chin. Phys. B 21 064701

[1] Gilbert K G and Otten L J 1982 Aero-Optical Phenomena (New York: AIAA)
[2] Jumper E J and Fitzgerald E J 2001 Prog. Aerospace. Sci. 37 299
[3] Mani A, Wang M and Moin P 2006 J. Opt. Soc. Am. A 23 3027
[4] Goodman J W 1996 Introduction to Fourier Optics (New York: McGraw-Hill)
[5] Trolinger J D 1982 ''Aero-optical characterization of aircraft optical turrets by holography, interferometry and shadowgraph.'' in Gilbert K G and Otten L J (ed.) Aero-Optical Phenomena (New York: AIAA) p. 200
[6] Malley M, Sutton G W and Kincheloe N 1992 Appl. Opt. 31 4440
[7] Hugo R J and Jumper E J 1996 Appl. Opt. 35 4436
[8] Abado S, Gordeyev S and Jumper E J 2009 Proc. SPIE 7466 746602
[9] Dimotakis P E, Catrakis H J and Fourguette D C 2001 J. Fluid Mech. 433 105
[10] Zubair F R and Catrakis H J 2007 AIAA J. 45 1663
[11] Truman C R and Lee M J 1990 Phys. Fluids A 2 851
[12] Mani A, Moin P and Wang M 2009 J. Fluid Mech. 625 273
[13] Fitzgerald E J and Jumper E J 2004 J. Fluid Mech. 512 153
[14] Yi S H, Zhao Y X, He L, Cheng Z Y and Tian L F 2007 Chin. Conf. Theor. Appl. Mech. p. 190
[15] Zhao Y X 2008 ''Experimental study of the spatiotemporal structure of supersonic mixing layer'' Ph. D Dissertation Changsha, National University of Defense Technology (in Chinese)
[16] Zhao Y X, Yi S H, Tian L F and Cheng Z Y 2009 Sci. Chin. E 52 3640
[17] Tian L F, Yi S H, Zhao Y X, He L and Cheng Z Y 2009 Sci. Chin. G 52 1357
[18] Gao Q, Jiang Z F, Yi S H and Zhao Y X 2010 Appl. Opt. 49 3786
[19] Meneveau C 1991 J. Fluid Mech. 232 469
[20] Farge M 1992 Ann. Rev. Fluid Mech. 24 395
[21] Farge M 1999 Phys. Fluids A 11 2187
[22] Farge M 2001 Phys. Rev. Lett. 87 054501
[23] Farge M, Schneider K, Pellegrino G, Wray A A and Rogallo R S 2003 Phys. Fluids A 15 2886
[24] Ruppert-Felsot J, Farge M and Petitjeans P 2007 J. Fluid Mech. 636 427
[25] Schneider K and Vasilyev O V 2010 Ann. Rev. Fluid Mech. 42 473
[26] Daubechies I 1992 Ten Lectures on Wavelets (Philadelphia: SIAM)
[27] Mallat S. A 2003 Wavelet Tour of Signal Processing (Singapore: Elsevier)
[28] Donoho D Wavelab http://www-stat.stanford.edu/ ~ wavelab
[29] Mandelbrot B 1974 J. Fluid Mech. 62 331
[30] Meneveau C and Sreenivasan K R 1991 J. Fluid Mech. 224 429
[31] Sreenivasan K R 1991 Ann. Rev. Fluid Mech. 23 539
[32] Halsey T C, Jensen M H, Kadanoff L P, Procaccia I and Shraiman B I 1986 Phys. Rev. A 33 1141
[33] Muzy J F, Bacry E and Arneodo A 1991 Phys. Rev. Lett. 67 3515
[34] Muzy J F, Bacry E and Arneodo A 1993 Phys. Rev. E 47 875
[35] Arneodo A, Bacry E and Muzy J F 1995 Physica A 213 232
[36] Audit B, Bacry E, Muzy J F and Arneodo 2002 IEEE Trans. Inform. Theor. 48 2938
[37] Gao Q, Liao T H and Cui Y F 2008 Chin. Phys. B 17 2018
[38] Azzalini A, Farge M and Schneider K 2005 Appl. Comput. Harmon. Anal. 18 177
[39] Ruppert-Felsot J E, Praud O, Sharon E and Swinney H L 2005 Phys. Rev. E 72 016311
[1] Optical wavelet-fractional squeezing combinatorial transform
Cui-Hong Lv(吕翠红), Ying Cai(蔡莹), Nan Jin(晋楠), and Nan Huang(黄楠). Chin. Phys. B, 2022, 31(2): 020303.
[2] Single pixel imaging based on semi-continuous wavelet transform
Chao Gao(高超), Xiaoqian Wang(王晓茜), Shuang Wang(王爽), Lidan Gou(苟立丹), Yuling Feng(冯玉玲), Guangyong Jin(金光勇), and Zhihai Yao(姚治海). Chin. Phys. B, 2021, 30(7): 074201.
[3] Magnetic-resonance image segmentation based on improved variable weight multi-resolution Markov random field in undecimated complex wavelet domain
Hong Fan(范虹), Yiman Sun(孙一曼), Xiaojuan Zhang(张效娟), Chengcheng Zhang(张程程), Xiangjun Li(李向军), and Yi Wang(王乙). Chin. Phys. B, 2021, 30(7): 078703.
[4] Discrete wavelet structure and discrete energy of classical plane light waves
Xing-Chu Zhang(张兴初) and Wei-Long She(佘卫龙). Chin. Phys. B, 2021, 30(4): 040301.
[5] Effect of high-or low-speed fluctuations on the small-scale bursting events in an active control experiment
Xiao-Tong Cui(崔晓通), Nan Jiang(姜楠), and Zhan-Qi Tang(唐湛棋). Chin. Phys. B, 2021, 30(1): 014702.
[6] Two-step phase-shifting Fresnel incoherent correlation holography based on discrete wavelet transform
Meng-Ting Wu(武梦婷), Yu Zhang(张雨), Ming-Yu Tang(汤明玉), Zhi-Yong Duan(段智勇), Feng-Ying Ma(马凤英), Yan-Li Du(杜艳丽), Er-Jun Liang(梁二军), and Qiao-Xia Gong(弓巧侠). Chin. Phys. B, 2020, 29(12): 124201.
[7] Dependence of interferogram phase on incident wavenumber and phase stability of Doppler asymmetric spatial heterodyne spectroscopy
Ya-Fei Zhang(张亚飞), Yu-Tao Feng(冯玉涛)†, Di Fu(傅頔), Peng-Chong Wang(王鹏冲), Jian Sun(孙剑), and Qing-Lan Bai(白清兰). Chin. Phys. B, 2020, 29(10): 104204.
[8] Using wavelet multi-resolution nature to accelerate the identification of fractional order system
Yuan-Lu Li(李远禄), Xiao Meng(孟霄), Ya-Qing Ding(丁亚庆). Chin. Phys. B, 2017, 26(5): 050201.
[9] Wavelet optimization for applying continuous wavelet transform to maternal electrocardiogram component enhancing
Qiong Yu(于琼), Qun Guan(管群), Ping Li(李萍), Tie-Bing Liu(刘铁兵), Jun-Feng Si(司峻峰), Ying Zhao(肇莹), Hong-Xing Liu(刘红星), Yuan-Qing Wang(王元庆). Chin. Phys. B, 2017, 26(11): 118702.
[10] Particle transport behavior in air channel flow with multi-group Lagrangian tracking
Hao Lu(卢浩), Wen-Jun Zhao(赵文君), Hui-Qiang Zhang(张会强), Bing Wang(王兵), Xi-Lin Wang(王希麟). Chin. Phys. B, 2017, 26(1): 014702.
[11] Three-dimensional turbulent flow over cube-obstacles
Hao Lu(卢浩), Wen-Jun Zhao(赵文君), Hui-Qiang Zhang(张会强), Bing Wang(王兵), Xi-Lin Wang(王希麟). Chin. Phys. B, 2017, 26(1): 014703.
[12] Quantitative analysis of ammonium salts in coking industrial liquid waste treatment process based on Raman spectroscopy
Ya-Nan Cao(曹亚南), Gui-Shi Wang(王贵师), Tu Tan(谈图), Ting-Dong Cai(蔡廷栋), Kun Liu(刘锟), Lei Wang(汪磊), Gong-Dong Zhu(朱公栋), Jiao-Xu Mei(梅教旭). Chin. Phys. B, 2016, 25(10): 107403.
[13] Harmonic signal extraction from noisy chaotic interference based on synchrosqueezed wavelet transform
Wang Xiang-Li (汪祥莉), Wang Wen-Bo (王文波). Chin. Phys. B, 2015, 24(8): 080203.
[14] Experimental study on spectrum and multi-scale nature of wall pressure and velocity in turbulent boundary layer
Zheng Xiao-Bo (郑小波), Jiang Nan (姜楠). Chin. Phys. B, 2015, 24(6): 064702.
[15] Warm-dry collocation of the recent drought in southwestern China tied to moisture transport and climate warming
Dai Xin-Gang (戴新刚), Liu Ye (柳晔), Wang Ping (汪萍). Chin. Phys. B, 2015, 24(4): 049201.
No Suggested Reading articles found!