Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 123401    DOI: 10.1088/1674-1056/aca14c
DATA PAPER Prev   Next  

Electron excitation processes in low energy collisions of hydrogen-helium atoms

Kun Wang(王堃)1, Chuan Dong(董川)1, Yi-Zhi Qu(屈一至)2,†, Ling Liu(刘玲)3, Yong Wu(吴勇)3, Xu-Hai Hong(洪许海)4, and Robert J. Buenker5
1 Institute of Environmental Science, Shanxi University, Taiyuan 030006, China;
2 College of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China;
3 National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China;
4 School of Physics and Electronic Technology, Liaoning Normal University, Dalian 116029, China;
5 Fachbereich C-Mathematik und Naturwissenschaften, Bergische Universitat Wuppertal, D-42097 Wuppertal, Germany
Abstract  The electron excitation processes of $\rm H(1s) + He(1s^{2}) \to H(2s/2p) + He(1s^{2})$ are studied in impact energy range of 20—2000 eV/u by using the quantum-mechanical molecular orbital close-coupling (QMOCC) method. Total and state-selective cross sections have been obtained and compared with the available theoretical and experimental results. The results agree well with available measurements in the overlapping energy regions overall. The comparison of our results with other theoretical calculations further demonstrates the importance of considering a sufficient number of channels. The datasets presented in this paper, including the excitation cross sections, are openly available at https://www.doi.org/10.57760/sciencedb.j00113.00083.
Keywords:  electron excitation processes      low energy collision      quantum-mechanical molecular orbital close-coupling method      cross section  
Received:  03 November 2022      Accepted manuscript online:  09 November 2022
PACS:  34.50.-s (Scattering of atoms and molecules)  
  34.20.-b (Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)  
  34.80.Dp (Atomic excitation and ionization)  
Fund: This work has been supported by the National Natural Science Foundation of China (Grant Nos. 12204288, 11934004, and 12274040).
Corresponding Authors:  Yi-Zhi Qu     E-mail:  yzqu@ucas.ac.cn

Cite this article: 

Kun Wang(王堃), Chuan Dong(董川), Yi-Zhi Qu(屈一至), Ling Liu(刘玲), Yong Wu(吴勇),Xu-Hai Hong(洪许海), and Robert J. Buenker Electron excitation processes in low energy collisions of hydrogen-helium atoms 2022 Chin. Phys. B 31 123401

[1] Asplund M 2005 Annual Review of Astronomy and Astrophysics 43 481
[2] Barklem P S 2016 The Astronomy and Astrophysics Review 24 9
[3] Wyse R F G 2016 Multi-Object Spectroscopy in the Next Decade: Big Questions, Large Surveys, and Wide Fields 507 13 (arXiv: 1604.04745v1)
[4] Kunder A, Kordopatis G, Steinmetz M, et al. 2017 The Astronomical Journal 153 75
[5] Sacco G G, Morbidelli L, Franciosini E, et al. 2014 Astronomy & Astrophysics 565 A113
[6] Cropper M, Katz D, Sartoretti P, et al. 2018 Astronomy & Astrophysics 616 A11
[7] Barklem P S, Belyaev A K and Asplund M 2003 Astronomy & Astrophysics 409 L1
[8] Belyaev A K and Voronov Y V 2018 The Astrophysical Journal 868 86
[9] Asplund M 2005 Annual Review of Astronomy and Astrophysics 43 481
[10] Xu S, Zuckerman B, Dufour P, Young E D, Klein B and Jura M 2017 The Astrophysical Journal Letters 836 L7
[11] Flannery M R 1969 J. Phys. B: Atom. Mol. Phys. 2 913
[12] Birely J H and McNeal R J 1972 Phys. Rev. A 5 257
[13] Bell K L, Kingston A E and McIlveen W A 1973 J. Phys. B: Atom. Mol. Phys. 6 1246
[14] Bell K L, Kingston A E and Winter T G 1974 J. Phys. B: Atom. Mol. Phys. 7 1339
[15] Sauers I and Thomas E W 1974 Phys. Rev. A 10 822
[16] Bell K L, Kingston A E and Winter T G 1976 J. Phys. B: Atom. Mol. Phys. 9 L279
[17] Benoit C and Gauyacq J P 1976 J. Phys. B: Atom. Mol. Phys. 9 L391
[18] Grosser J and Krüger W 1984 Z. Phys. A 318 25
[19] Van Zyl B and Gealy M W 1987 Phys. Rev. A 35 3741
[20] Kimura M and Lane N F 1988 Phys. Rev. A 37 2900
[21] Hildenbrand R, Grun N and Scheid W 1995 J. Phys. B: Atom. Mol. Phys. 28 4781
[22] Belyaev A K 2015 Phys. Rev. A 91 062709
[23] Frémont F and Belyaev A K 2017 J. Phys. B: Atom. Mol. Opt. Phys. 50 045201
[24] Ast H, Ludde H J and Dreizler R M 1990 J. Phys. B: Atom. Mol. Opt. Phys. 23 2305
[25] Allard N F, Kielkopf J F, Xu S, Guillon G, Mehnen B, Linguerri R, Al Mogren M M, Hochlaf M and Hubeny I 2020 Monthly Notices of the Royal Astronomical Society 494 868
[26] Buenker R J and Phillips R A 1985 Journal of Molecular Structure: THEOCHEM 123 291
[27] Krebs S and Buenker R J 1995 The Journal of Chemical Physics 103 5613
[28] Zygelman B and Dalgarno A 1986 Phys. Rev. A 33 3853
[29] Kimura M and Lane N F 1989 Advances In Atomic, Molecular, and Optical Physics 26 79
[30] Johnson B R 1973 J. Comput. Phys. 13 445
[31] Gargaud M, McCarroll R and Valiron P 1987 J. Phys. B: Atom. Mol. Phys. 20 1555
[32] Bransden B H and McDowell M R C 1992 Charge exchange and the theory of ion-atom collisions (Oxford: Clarendon)
[33] Bacchus-Montabonel M C and Ceyzeriat P 1998 Phys. Rev. A 58 1162
[34] Errea L F, Mendez L and Riera A 1982 J. Phys. B: Atom. Mol. Phys. 15 101
[35] Errea L F, Harel C, Jouini H, Mendez L, Pons B and Riera A 1994 J. Phys. B: Atom. Mol. Opt. Phys. 27 3603
[36] Dunning T H 1989 The Journal of Chemical Physics 90 1007
[37] Woon D E and Dunning T H 1994 The Journal of Chemical Physics 100 2975
[38] Kramida A, Ralchenko, Yu, Reader, J. and NIST ASD Team 2019 [Online]. Available: https://physics.nist.gov/asd, National Institute of Standards and Technology, Gaithersburg, MD
[39] Herrero B, Cooper I L and Dickinson A S 1996 JJ. Phys. B: Atom. Mol. Opt. Phys. 29 5583
[40] Wang K, Qu Y Z, Liu C H, Liu L, Wu Y, Liebermann H P and Buenker R J 2019 J. Phys. B: Atom. Mol. Opt. Phys. 52 075202
[1] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[2] State-to-state integral cross sections and rate constants for the N+(3P)+HD→NH+/ND++D/H reaction: Accurate quantum dynamics studies
Hanghang Chen(陈航航), Zijiang Yang(杨紫江), and Maodu Chen(陈茂笃). Chin. Phys. B, 2022, 31(9): 098204.
[3] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[4] New experimental measurement of natSe(n, γ) cross section between 1 eV to 1 keV at the CSNS Back-n facility
Xin-Rong Hu(胡新荣), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Gong-Tao Fan(范功涛), Hong-Wei Wang(王宏伟), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙), Ying-Du Liu(刘应都), Yue Zhang(张岳), Xin-Xiang Li(李鑫祥), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Bing Jiang(姜炳), De-Xin Wang(王德鑫), Suyalatu Zhang(张苏雅拉吐), Zhen-Dong An(安振东), Yu-Ting Wang(王玉廷), Chun-Wang Ma(马春旺), Jian-Jun He(何建军), Jun Su(苏俊), Li-Yong Zhang(张立勇), Yu-Xuan Yang(杨宇萱), Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(8): 080101.
[5] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[6] Scaled radar cross section measurement method for lossy targets via dynamically matching reflection coefficients in THz band
Shuang Pang(逄爽), Yang Zeng(曾旸), Qi Yang(杨琪), Bin Deng(邓彬), and Hong-Qiang Wang(王宏强). Chin. Phys. B, 2022, 31(6): 068703.
[7] Measurement of 232Th (n,γ) cross section at the CSNS Back-n facility in the unresolved resonance region from 4 keV to 100 keV
Bing Jiang(姜炳), Jianlong Han(韩建龙), Jie Ren(任杰), Wei Jiang(蒋伟), Xiaohe Wang(王小鹤), Zian Guo(郭子安), Jianglin Zhang(张江林), Jifeng Hu(胡继峰), Jingen Chen(陈金根), Xiangzhou Cai(蔡翔舟), Hongwei Wang(王宏伟), Longxiang Liu(刘龙祥), Xinxiang Li(李鑫祥), Xinrong Hu(胡新荣), and Yue Zhang(张岳). Chin. Phys. B, 2022, 31(6): 060101.
[8] Neutron activation cross section data library
Xiao-Long Huang(黄小龙), Zhi-Gang Ge(葛智刚), Yong-Li Jin(金永利), Hai-Cheng Wu(吴海成), Xi Tao(陶曦),Ji-Min Wang(王记民), Li-Le Liu(刘丽乐), Yue Zhang(张玥), and Xiao-Fei Wu(吴小飞). Chin. Phys. B, 2022, 31(6): 060102.
[9] Measurements of the 107Ag neutron capture cross sections with pulse height weighting technique at the CSNS Back-n facility
Xin-Xiang Li(李鑫祥), Long-Xiang Liu(刘龙祥), Wei Jiang(蒋伟), Jie Ren(任杰), Hong-Wei Wang(王宏伟), Gong-Tao Fan(范功涛), Jian-Jun He(何建军), Xi-Guang Cao(曹喜光), Long-Long Song(宋龙龙),Yue Zhang(张岳), Xin-Rong Hu(胡新荣), Zi-Rui Hao(郝子锐), Pan Kuang(匡攀), Bing Jiang(姜炳),Xiao-He Wang(王小鹤), Ji-Feng Hu(胡继峰), Jin-Cheng Wang(王金成), De-Xin Wang(王德鑫),Su-Yalatu Zhang(张苏雅拉吐), Ying-Du Liu(刘应都), Xu Ma(麻旭), Chun-Wang Ma(马春旺),Yu-Ting Wang(王玉廷), Zhen-Dong An(安振东), Jun Su(苏俊), Li-Yong Zhang(张立勇),Yu-Xuan Yang(杨宇萱), Wen-Bo Liu(刘文博), Wan-Qing Su(苏琬晴),Sheng Jin(金晟), and Kai-Jie Chen(陈开杰). Chin. Phys. B, 2022, 31(3): 038204.
[10] A new global potential energy surface of the ground state of SiH2+ (X2A1) system and dynamics calculations of the Si+ + H2 (v0 = 2, j0 = 0) → SiH+ + H reaction
Yong Zhang(张勇), Xiugang Guo(郭秀刚), and Haigang Yang(杨海刚). Chin. Phys. B, 2022, 31(11): 113101.
[11] Electron-impact ionization cross section calculations for lithium-like ions
Guo-Jie Bian(卞国杰), Jyh-Ching Chang(张稚卿), Ke-Ning Huang(黄克宁), Chen-Sheng Wu(武晨晟), Yong-Jun Cheng(程勇军), Kai Wang(王凯), and Yong Wu(吴勇). Chin. Phys. B, 2022, 31(1): 013401.
[12] State-to-state dynamics of reactions H+DH'(v = 0,j = 0) → HH'(v',j')+D/HD(v',j')+H' with time-dependent quantum wave packet method
Juan Zhao(赵娟), Da-Guang Yue(岳大光), Lu-Lu Zhang(张路路), Shang Gao(高尚), Zhong-Bo Liu(刘中波), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(7): 073102.
[13] Exact quantum dynamics study of the H(2S)+SiH+(X1Σ+) reaction on a new potential energy surface of SiH2+(X2A1)
Wen-Li Zhao(赵文丽), Rui-Shan Tan(谭瑞山), Xue-Cheng Cao(曹学成), Feng Gao(高峰), and Qing-Tian Meng(孟庆田). Chin. Phys. B, 2021, 30(12): 123403.
[14] Elastic electron scattering with formamide-(H2O)n complexes (n=1, 2): Influence of microsolvation on the π* and σ* resonances
Kedong Wang(王克栋), Yan Wang(王言), Jie Liu(刘洁), Yiwen Wang(王怡文), and Haoxing Zhang(张浩兴). Chin. Phys. B, 2021, 30(12): 123401.
[15] Wideband radar cross section reduction based on absorptive coding metasurface with compound stealth mechanism
Xinmi Yang(杨歆汨), Changrong Liu(刘昌荣), Bo Hou(侯波), and Xiaoyang Zhou(周小阳). Chin. Phys. B, 2021, 30(10): 104102.
No Suggested Reading articles found!