Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 014201    DOI: 10.1088/1674-1056/ac728d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Evolution of polarization singularities accompanied by avoided crossing in plasmonic system

Yi-Xiao Peng(彭一啸)1, Qian-Ju Song(宋前举)2,†, Peng Hu(胡鹏)1, Da-Jian Cui(崔大健)3, Hong Xiang(向红)1,‡, and De-Zhuan Han(韩德专)1,§
1 Chongqing University, Chongqing 400044, China;
2 School of Science, Southwest University of Science and Technology, Mianyang 621010, China;
3 Chongqing Key Laboratory of Core Optoelectronic Devices for Quantum Communication, Chongqing Optoelectronics Research Institute, Chongqing 400060, China
Abstract  The evolution of polarization singularities supported in a one-dimensional periodic plasmonic system is studied. The lateral inversion symmetry of the system, which breaks the in-plane inversion symmetry and up-down mirror symmetry simultaneously, yields abundant polarization states. A complete evolution process with geometry for the polarization states is traced. In the evolution, circularly polarized points (C points) can stem from 3 different processes. In addition to the previously reported processes occurring in an isolated band, a new type of C point appearing in two bands simultaneously due to the avoided band crossing, is observed. Unlike the dielectric system with a similar structure which only supports at-$\varGamma$ bound states in the continuum (BICs), accidental BICs off the $\varGamma$ point are realized in this plasmonic system. This work provides a new scheme of polarization manipulation for the plasmonic systems.
Keywords:  polarization singularities      topological charge      avoided crossing      inversion symmetry  
Received:  19 February 2022      Revised:  20 May 2022      Accepted manuscript online:  24 May 2022
PACS:  42.25.-p (Wave optics)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.79.Dj (Gratings)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074049 and 12047564), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2020CDJQY-Z006 and 2020CDJQYZ003), and the Research Foundation of SWUST (Grant No. 21zx7141).
Corresponding Authors:  Qian-Ju Song, Hong Xiang, De-Zhuan Han     E-mail:  qjsong@cqu.edu.cn;xhong@cqu.edu.cn;dzhan@cqu.edu.cn

Cite this article: 

Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专) Evolution of polarization singularities accompanied by avoided crossing in plasmonic system 2023 Chin. Phys. B 32 014201

[1] Ye W, Gao Y and Liu J 2020 Phys. Rev. Lett. 124 153904
[2] Yoda T and Notomi M 2020 Phys. Rev. Lett. 125 053902
[3] Zhen B, Hsu C W, Lu L, Stone A D and Soljacic M 2014 Phys. Rev. Lett. 113 257401
[4] Hsu C W, Zhen B, Stone A D, Joannopoulos J D and Soljačić M 2016 Nat. Rev. Mater. 1 16048
[5] Dai S, Liu L, Han D and Zi J 2018 Phys. Rev. B 98 081405
[6] Yuan L and Lu Y Y 2018 Phys. Rev. A 97 043828
[7] Chen W, Chen Y and Liu W 2019 Phys. Rev. Lett. 122 153907
[8] Song Q J, Hu J S, Dai S W, Zheng C X, Han D Z, Zi J, Zhang Z Q and Chan C T 2020 Sci. Adv. 6 eabc1160
[9] Sadreev A F 2021 Rep. Prog. Phys. 84 055901
[10] Yuan L, Luo X and Lu Y Y 2021 Phys. Rev. A 104 023521
[11] Kodigala A, Lepetit T, Gu Q, Bahari B, Fainman Y and Kante B 2017 Nature 541 196
[12] Huang C, Zhang C, Xiao S M, Wang Y H, Fan Y B, Liu Y L, Zhang N, Qu G Y, Ji H J, Han J C, Ge L, Kivshar Y and Song Q H 2020 Science 367 1018
[13] Yesilkoy F, Arvelo E R, Jahani Y, Liu M, Tittl A, Cevher V, Kivshar Y and Altug H 2019 Nat. Photon. 13 390
[14] Melik-Gaykazyan E, Koshelev K, Choi J H, Kruk S S, Bogdanov A, Park H G and Kivshar Y 2021 Nano Lett. 21 1765
[15] Koshelev K, Lepeshov S, Liu M, Bogdanov A and Kivshar Y 2018 Phys. Rev. Lett. 121 193903
[16] Wang H F, Gupta S K, Zhu X Y, Lu M H, Liu X P and Chen Y F 2018 Phys. Rev. B 98 214101
[17] Liu W, Wang B, Zhang Y, Wang J, Zhao M, Guan F, Liu X, Shi L and Zi J 2019 Phys. Rev. Lett. 123 116104
[18] Mermet-Lyaudoz R, Dubois F, Hoang N V, Drouard E and Hai S N 2019 arXiv: 1905.03868 [physics.optics]
[19] Lee S G, Kim S H and Kee C S 2020 Nanophotonics 9 4373
[20] Ovcharenko A I, Blanchard C, Hugonin J P and Sauvan C 2020 Phys. Rev. B 101 155303
[21] Yin X, Jin J, Soljacic M, Peng C and Zhen B 2020 Nature 580 467
[22] Glowadzka W, Wasiak M and Czyszanowski T 2021 Nanophotonics 10 3979
[23] Han S, Pitchappa P, Wang W, Srivastava Y K, Rybin M V and Singh R 2021 Adv. Opt. Mater. 9 2002001
[24] Overvig A, Yu N and Alu A 2021 Phys. Rev. Lett. 126 073001
[25] Zeng Y, Hu G, Liu K, Tang Z and Qiu C W 2021 Phys. Rev. Lett. 127 176101
[26] Zhou H, Zhen B, Hsu C W, Miller O D, Johnson S G, Joannopoulos J D and Soljačić M 2016 Optica 3 001079
[27] Meng Y, Zhang R Y, Zhang Q, Liu Z, Wu X, Xiao J, Xiang H, Han D and Wen W 2017 J. Phys. D: Appl. Phys. 50 485101
[28] Doeleman H M, Monticone F, den Hollander W, Alú A and Koenderink A F 2018 Nat. Photon. 12 397
[29] Cohen-Tannaoudji C, Diu B and Laloe F 1992 Quantum Mechanics (New York: Wiley-VCH) pp. 410-412
[30] Lin Y, Feng T, Lan S, Liu J and Xu Y 2020 Phys. Rev. Appl. 13 064032
[31] Kang M, Zhang S, Xiao M and Xu H 2021 Phys. Rev. Lett. 126 117402
[1] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[2] Settled fast measurement of topological charge by direct extraction of plane wave from vortex beam
Xiao-Bo Yang(杨晓波) and Jin Hu(胡进). Chin. Phys. B, 2021, 30(10): 104203.
[3] Measuring orbital angular momentum of acoustic vortices based on Fraunhofer’s diffraction
Chao-Fan Gong(龚超凡), Jing-Jing Li(李晶晶), Kai Guo(郭凯), Hong-Ping Zhou(周红平)†, and Zhong-Yi Guo(郭忠义)‡. Chin. Phys. B, 2020, 29(10): 104301.
[4] Propagation dynamics of off-axis noncanonical vortices in a collimated Gaussian beam
Cheng Yin(殷澄), Xuefen Kan(阚雪芬), Hailang Dai(戴海浪), Minglei Shan(单鸣雷), Qingbang Han(韩庆邦), Zhuangqi Cao(曹庄琪). Chin. Phys. B, 2019, 28(3): 034205.
[5] Symmetry and asymmetry rogue waves in two-component coupled nonlinear Schrödinger equations
Zai-Dong Li(李再东), Cong-Zhe Huo(霍丛哲), Qiu-Yan Li(李秋艳), Peng-Bin He(贺鹏斌), Tian-Fu Xu(徐天赋). Chin. Phys. B, 2018, 27(4): 040505.
[6] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[7] Multiple off-axis acoustic vortices generated by dual coaxial vortex beams
Wen Li(李雯), Si-Jie Dai(戴思捷), Qing-Yu Ma(马青玉), Ge-Pu Guo(郭各朴), He-Ping Ding(丁鹤平). Chin. Phys. B, 2018, 27(2): 024301.
[8] Orbital angular momentum density and spiral spectra of Lorentz-Gauss vortex beams passing through a single slit
Zhi-Yue Ji(季志跃), Guo-Quan Zhou(周国泉). Chin. Phys. B, 2017, 26(9): 094202.
[9] Bound states of Dirac fermions in monolayer gapped graphene in the presence of local perturbations
Mohsen Yarmohammadi, Malek Zareyan. Chin. Phys. B, 2016, 25(6): 068105.
[10] Polarization singularities in near-field of Gaussian vortex beam diffracted by a circular aperture
Li Jian-Long(李建龙). Chin. Phys. B, 2010, 19(12): 124001.
[11] Composite optical vortices in noncollinear Laguerre--Gaussian beams and their propagation in free space
Cheng Ke(程科), Liu Pu-Sheng(刘普生), and Lü Bai-Da(吕百达) . Chin. Phys. B, 2008, 17(5): 1743-1751.
[12] Topological susceptibility from overlap fermion
Ying He-Ping (应和平), Zhang Jian-Bo (张剑波). Chin. Phys. B, 2003, 12(12): 1374-1377.
[13] AN EFFECTIVE TWO-LEVEL CHANNEL FOR AN IMPURITY IN A SUPERLATTICE
Zhang Ai-zhen (张爱珍), Zhang Ping (张平), Duan Su-qing (段素青), Zhao Xian-geng (赵宪庚), Liang Jiu-qing (梁九卿). Chin. Phys. B, 2001, 10(6): 537-540.
No Suggested Reading articles found!