Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 040706    DOI: 10.1088/1674-1056/ac4a70
INSTRUMENTATION & MEASUREMENT Prev   Next  

High-precision nuclear magnetic resonance probe suitable for in situ studies of high-temperature metallic melts

Ao Li(李傲)1,2,†, Wei Xu(许巍)1,†,‡, Xiao Chen(陈霄)1,†, Bing-Nan Yao(姚冰楠)1, Jun-Tao Huo(霍军涛)1, Jun-Qiang Wang(王军强)1,2,§, and Run-Wei Li(李润伟)1,2
1 CAS Key Laboratory of Magnetic Materials and Devices, and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  High-temperature nuclear magnetic resonance (NMR) has proven to be very useful for detecting the temperature-induced structural evolution and dynamics in melts. However, the sensitivity and precision of high-temperature NMR probes are limited. Here we report a sensitive and stable high-temperature NMR probe based on laser-heating, suitable for in situ studies of metallic melts, which can work stably at the temperature of up to 2000 K. In our design, a well-designed optical path and the use of a water-cooled copper radio-frequency (RF) coil significantly optimize the signal-to-noise ratio (S/NR) at high temperatures. Additionally, a precise temperature controlling system with an error of less than ±1 K has been designed. After temperature calibration, the temperature measurement error is controlled within ±2 K. As a performance testing, 27Al NMR spectra are measured in Zr-based metallic glass-forming liquid in situ. Results show that the S/NR reaches 45 within 90 s even when the sample's temperature is up to 1500 K and that the isothermal signal drift is better than 0.001 ppm per hour. This high-temperature NMR probe can be used to clarify some highly debated issues about metallic liquids, such as glass transition and liquid-liquid transition.
Keywords:  high-temperature NMR probe      laser beams      temperature measurement      metallic melts  
Received:  10 December 2021      Revised:  09 January 2022      Accepted manuscript online:  12 January 2022
PACS:  07.57.Pt (Submillimeter wave, microwave and radiowave spectrometers; magnetic resonance spectrometers, auxiliary equipment, and techniques)  
  61.25.Mv (Liquid metals and alloys)  
  76.60.-k (Nuclear magnetic resonance and relaxation)  
Fund: Project supported by the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. YZ201639), the National Key R&D Program of China (Grant No. 2018YFA0703604), the National Natural Science Foundation of China (Grant Nos. 51922102, 92163108, and 52071327), and the Zhejiang Provincial Natural Science Foundation of China (Grant No. LR18E010002).
Corresponding Authors:  Wei Xu, Jun-Qiang Wang     E-mail:  weixu@nimte.ac.cn;jqwang@nimte.ac.cn

Cite this article: 

Ao Li(李傲), Wei Xu(许巍), Xiao Chen(陈霄), Bing-Nan Yao(姚冰楠), Jun-Tao Huo(霍军涛), Jun-Qiang Wang(王军强), and Run-Wei Li(李润伟) High-precision nuclear magnetic resonance probe suitable for in situ studies of high-temperature metallic melts 2022 Chin. Phys. B 31 040706

[1] Wang W H 2019 Prog. Mater. Sci. 106 100561
[2] Cao Y, Song L, Li A, Huo J, Li F, Xu W and Wang J Q 2020 Sci. Chin. Phys. Mech. & Astron. 63 276113
[3] Cao L, Song L J, Cao Y R, Xu W, Huo J T, Lu Y Z and Wang J Q 2021 Chin. Phys. B 30 076103
[4] Mu C, Yin Q, Tu Z, Gong C, Lei H, Li Z and Luo J 2021 Chin. Phys. Lett. 38 077402
[5] Shao Y T, Hong W S, Li S L, Li Z and Luo J L 2019 Chin. Phys. Lett. 36 127401
[6] Fan G Z, Chen R Y, Wang N L and Luo J L 2015 Chin. Phys. Lett. 32 077203
[7] Luo J, Yang J, Maeda S, Li Z and Zheng G Q 2018 Chin. Phys. B 27 077401
[8] Stebbins J F and Farnan I 1992 Science 255 586
[9] George A M and Stebbins J F 1998 Am. Mineral. 83 1022
[10] Massiot D, Fayon F, Montouillout V, Pellerin N, Hiet J, Roiland C, Florian P, Coutures J P, Cormier L and Neuville D R 2008 J. Non. Cryst. Solids 354 249
[11] Shakhovoy R, Sarou-Kanian V, Rakhmatullin A, Véron E and Bessada C 2015 J. Appl. Phys. 118 243906
[12] Liu X, Liu S, Chen E, Peng L and Yu Y 2019 J. Phys. Chem. Lett. 10 4285
[13] Warren-Jr W W and Wernick J H 1971 Phys. Rev. B 4 1401
[14] El-Hanany U and Zamir D 1972 Phys. Rev. B 5 30
[15] Li L, Schroers J and Wu Y 2003 Phys. Rev. Lett. 91 265502
[16] Li L and Wu Y 2008 J. Chem. Phys. 128 052307
[17] Stebbins J F, Schneider E, Murdoch J B, Pines A and Carmichael I S E 1986 Rev. Sci. Instrum. 57 39
[18] Adler S B, Michaels J N and Reimer J A 1990 Rev. Sci. Instrum. 61 3368
[19] Stebbins J F 1991 Chem. Rev. 91 1353
[20] Kirchhain H and van Wüllen L 2019 Prog. Nucl. Magn. Reson. Spectrosc. 114-115 71
[21] Hafner S and Nachtrieb N H 1964 Rev. Sci. Instrum. 35 680
[22] DeFries T H and Jonas J 1979 J. Magn. Reson. 35 111
[23] Privalov A F and Lips O 2002 Appl. Magn. Reson. 22 597
[24] Massiot D, Bessada C, Echegut P, Coutures J P and Taullele F 1990 Solid State Ion. 37 223
[25] Rollet A L, Sarou-Kanian V and Bessada C 2009 Inorg. Chem. 48 10972
[26] Ernst H, Freude D, Mildner T and Wolf I 1996 Solid State Nucl. Magn. Reson. 6 147
[27] Maresch G G, Kendrick R D and Yannoni C S 1990 Rev. Sci. Instrum. 61 77
[28] Poplett I J F, Smith M E and Strange J H 2000 Meas. Sci. Technol. 11 1703
[29] Capron M, Florian P, Fayon F, Trumeau D, Hennet L, Gaihlanou M, Thiaudiére D, Landron C, Douy A and Massiot D 2001 J. Non. Cryst. Solids 293-295 496
[30] Massiot D, Trumeau D, Touzo B, Farnan I, Rifflet J C, Douy A and Coutures J P 1995 J. Phys. Chem. 99 16455
[31] Tang X P, Geyer U, Busch R, Johnson W L and Wu Y 1999 Nature 402 160
[32] Xu W, Sandor M T, Yu Y, Ke H B, Zhang H P, Li M Z, Wang W H, Liu L and Wu Y 2015 Nat. Commun. 6 7696
[33] Peng L, Chen E, Liu S, Liu X and Yu Y 2019 Phys. Rev. B 100 104113
[34] Chen E Y, Peng S X, Peng L, Di Michiel M, Vaughan G B, Yu Y, Yu H B, Ruta B, Wei S and Liu L 2021 Scr. Mater. 193 117
[35] Iwashita Y and Icr K 2004 Proceedings of the LINAC, August 16-20,2004, Lübeck, Germany, p. 700
[36] Titman J M 1977 Phys. Rep. 33 1
[37] Seymour E F W 1974 Pure Appl. Chem. 40 41
[38] Hoult D I and Richards R 1976 J. Magn. Reson. 24 71
[39] Arakawa M, Crooks L, Mc-Carten B, Hoenninger J, Watts J and Kaufman L 1985 Radiology 154 227
[40] Moussaed G, Gobet M, Rollet A L, Sarou-Kanian V, Salanne M, Simon C and Bessada C 2010 ECS Trans. 33 159
[41] Baker D B and Conradi M S 2005 Rev. Sci. Instrum. 76 073906
[42] Wu J, Kim N and Stebbins J F 2011 Solid State Nucl. Magn. Reson. 40 45
[43] Thurber K R and Tycko R 2009 J. Magn. Reson. 196 84
[44] Jardón-Álvarez D and auf der Günne J S 2018 Solid State Nucl. Magn. Reson. 94 26
[45] Warren-Jr W W and Clark W G 1970 Phys. Rev. B 1 24
[46] El-Hanany U and Zamir D 1969 Phys. Rev. 183 809
[47] El-Hanany U and Zamir D 1972 Solid State Commun. 10 1223
[48] Zhao X, Wang C, Zheng H, Tian Z and Hu L 2017 Phys. Chem. Chem. Phys. 19 15962
[49] Zhou C, Hu L, Sun Q, Qin J, Bian X and Yue Y 2013 Appl. Phys. Lett. 103 171904
[50] Soklaski R, Tran V, Nussinov Z, Kelton K and Yang L 2016 Philos. Mag. 96 1212
[51] Jaiswal A, O'Keeffe S, Mills R, Podlesynak A, Ehlers G, Dmowski W, Lokshin K, Stevick J, Egami T and Zhang Y 2016 J. Phys. Chem. B 120 1142
[52] Bi Q L and Lv Y J 2014 Chin. Phys. Lett. 31 106401
[53] Wen D, Deng Y, Gao M and Tian Z 2021 Chin. Phys. B 30 076101
[54] Kryukov E, Bugoslavsky Y, Linde A J P, Holubar T, Burgess S, Marlow D and Good J 2020 Solid State Nucl. Magn. Reson. 109 101684
[55] Warren-Jr W W and Clark W G 1969 Phys. Rev. 177 600
[56] Kerlin A L and Clark W G 1975 Phys. Rev. B 12 3533
[57] Chu W, Shang J, Yin K, Ren N, Hu L, Zhao Y and Dong B 2020 Acta Mater. 196 690
[1] In situ temperature measurement of vapor based onatomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[2] Characterization of premixed swirling methane/air diffusion flame through filtered Rayleigh scattering
Meng Li(李猛), Bo Yan(闫博), Shuang Chen(陈爽), Li Chen(陈力), and Jin-He Mu(母金河). Chin. Phys. B, 2022, 31(3): 034702.
[3] Quantitative temperature imaging at elevated pressures and in a confined space with CH4/air laminar flames by filtered Rayleigh scattering
Bo Yan(闫博), Li Chen(陈力), Meng Li(李猛), Shuang Chen(陈爽), Cheng Gong(龚诚), Fu-Rong Yang(杨富荣), Yun-Gang Wu(吴运刚), Jiang-Ning Zhou(周江宁), Jin-He Mu(母金河). Chin. Phys. B, 2020, 29(2): 024701.
[4] Highly sensitive optical fiber temperature sensor based on resonance in sidewall of liquid-filled silica capillary tube
Min Li(李敏), Biao Feng(冯彪), Jiwen Yin(尹辑文). Chin. Phys. B, 2019, 28(11): 114201.
[5] Shock temperature and reflectivity of precompressed H2O up to 350 GPa:Approaching the interior of planets
Zhi-Yu He(贺芝宇), Hua Shu(舒桦), Xiu-Guang Huang(黄秀光), Qi-Li Zhang(张其黎), Guo Jia(贾果), Fan Zhang(张帆), Yu-Chun Tu(涂昱淳), Jun-Yue Wang(王寯越), Jun-Jian Ye(叶君建), Zhi-Yong Xie(谢志勇), Zhi-Heng Fang(方智恒), Wen-Bing Pei(裴文兵), Si-Zu Fu(傅思祖). Chin. Phys. B, 2018, 27(12): 126202.
[6] General equation describing viscosity of metallic melts under horizontal magnetic field
Yipeng Xu(许亦鹏), Xiaolin Zhao(赵晓林), Tingliang Yan(颜廷亮). Chin. Phys. B, 2017, 26(3): 036601.
[7] Analysis of the blackbody-radiation shift in an ytterbium optical lattice clock
Yi-Lin Xu(徐艺琳), Xin-Ye Xu(徐信业). Chin. Phys. B, 2016, 25(10): 103202.
[8] Fast thermometry for trapped atoms using recoil-induced resonance
Zhao Yan-Ting (赵延霆), Su Dian-Qiang (苏殿强), Ji Zhong-Hua (姬中华), Zhang Hong-Shan (张洪山), Xiao Lian-Tuan (肖连团), Jia Suo-Tang (贾锁堂). Chin. Phys. B, 2015, 24(9): 093701.
[9] Theoretical analysis and numerical simulation of the impulse delivering from laser-produced plasma to solid target
Yang Yan-Nan(杨雁南), Yang Bo(杨波), Zhu Jin-Rong(朱金荣), Shen Zhong-Hua(沈中华), Lu Jian(陆建), and Ni Xiao-Wu(倪晓武). Chin. Phys. B, 2008, 17(4): 1318-1325.
No Suggested Reading articles found!