Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120517    DOI: 10.1088/1674-1056/ac364c
Special Issue: SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies Prev   Next  

Modeling the dynamics of firms' technological impact

Shuqi Xu(徐舒琪)1, Manuel Sebastian Mariani1,2,†, and Linyuan Lü(吕琳媛)1,3,‡
1 Yangtze Delta Region Institute(Huzhou) & Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Huzhou 313001, China;
2 University Research Priority Program on Social Networks, University of Zurich, CH-8050 Zurich, Switzerland;
3 Beijing Computational Science Research Center, Beijing 100193, China
Abstract  Recent studies in complexity science have uncovered temporal regularities in the dynamics of impact along scientific and other creative careers, but they did not extend the obtained insights to firms. In this paper, we show that firms' technological impact patterns cannot be captured by the state-of-the-art dynamical models for the evolution of scientists' research impact, such as the Q model. Therefore, we propose a time-varying returns model which integrates the empirically-observed relation between patent order and technological impact into the Q model. The proposed model can reproduce the timing pattern of firms' highest-impact patents accurately. Our results shed light on modeling the differences behind the impact dynamics of researchers and firms.
Keywords:  firm technological impact      patent analysis      impact dynamics  
Received:  31 July 2021      Revised:  17 September 2021      Accepted manuscript online:  04 November 2021
PACS:  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
  89.65.Gh (Economics; econophysics, financial markets, business and management)  
  07.05.Tp (Computer modeling and simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61673150 and 11622538). M.S.M. acknowledges financial support from the URPP Social Networks at the University of Zurich, and the UESTC professor research start-up (Grant No. ZYGX2018KYQD215). L.L. acknowledges the Science Strength Promotion Programme of UESTC, Chengdu.
Corresponding Authors:  Manuel Sebastian Mariani, Linyuan Lü     E-mail:;

Cite this article: 

Shuqi Xu(徐舒琪), Manuel Sebastian Mariani, and Linyuan Lü(吕琳媛) Modeling the dynamics of firms' technological impact 2021 Chin. Phys. B 30 120517

[1] Sinatra R, Wang D, Deville P, Song C and Barabási A L 2016 Science 354 aaf5239
[2] Bol T, De Vaan M and De Rijt A V 2018 Proc. Natl. Acad. Sci. USA 115 4887
[3] Yucesoy B, Wang X, Huang J and Barabási A L 2018 EPJ Data Sci. 7 7
[4] Williams O E, Lacasa L and Latora V 2019 Nat. Commun. 10 2256
[5] Li W, Aste T, Caccioli F and Livan G 2019 Nat. Commun. 10 1
[6] Janosov M, Battiston F and Sinatra R 2020 EPJ Data Sci. 9 9
[7] Siudem G, Żogała-Siudem B, Cena A and Gagolewski M 2020 Proc. Natl. Acad. Sci. USA 117 13896
[8] Liu L, Wang Y, Sinatra R, Giles C L, Song C and Wang D 2018 Nature 559 396
[9] Yucesoy B and Barabási A L 2016 EPJ Data Sci. 5 17
[10] Rossi M 2016 Corp. Ownersh. Control. 13 217
[11] Coad A, Holm J R, Krafft J and Quatraro F 2018 J. Evol. Econ. 28 1
[12] Huergo E and Jaumandreu J 2004 Small Bus. Econ. 22 193
[13] Balasubramanian N and Lee J 2008 Ind. Corp. Chang. 17 1019
[14] Xu S, Mariani M S, Lü L, Napolitano L, Pugliese E and Zaccaria A 2021 arXiv:2108.00200 [physics.soc–ph]
[15] Bloom N and Van Reenen J 2002 Econ. J. 112 97
[16] Fallatah M I 2018 J. Knowl. Manag. 22 678
[17] Pugliese E, Napolitano L, Zaccaria A and Pietronero L 2019 PLoS One 14 e0223403
[18] Kogan L, Papanikolaou D, Seru A and Stoffman N 2017 Q. J. Econ. 132 665
[19] Stoffman N, Woeppel M and Yavuz M D 2020 Kelley Sch. Bus. Res. Pap. 19-5
[20] Kim J and Lee S 2015 Technol. Forecast. Soc. Chang. 92 332
[21] Strumsky D and Lobo J 2015 Res. Policy 44 1445
[22] Acemoglu D, Akcigit U and Kerr W R 2016 Proc. Natl. Acad. Sci. USA 113 11483
[23] Jaffe A B and De Rassenfosse G 2019 Research Handbook on the Economics of Intellectual Property Law (Cheltenham: Edward Elgar Publishing)
[24] Squicciarini M, Dernis H and Criscuolo C 2013 OECD Science, Technology and Industry Working Papers (Paris: OECD Publishing)
[25] Alcácer J, Gittelman M and Sampat B 2009 Res. Policy 38 415
[26] Criscuolo P and Verspagen B 2008 Res. Policy 37 1892
[27] Waltman L 2016 J. Informetrics 10 365
[28] Mariani M S, Medo M and Zhang Y C 2015 Sci. Reports 5 1
[29] Dunaiski M, Geldenhuys J and Visser W 2019 J. Informetrics 13 270
[30] Xu S, Mariani M S, Lü L and Medo M 2020 J. Informetrics 14 101005
[31] Barabási A L and Albert R 1999 Science 286 509
[32] Valverde S, Solé R V, Bedau M A and Packard N 2007 Phys. Rev. E 76 056118
[33] Higham K W, Governale M, Jaffe A and Zülicke U 2017 Phys. Rev. E 95 042309
[34] Mariani M S, Medo M and Lafond F 2019 Technol. Forecast. Soc. Chang. 146 644
[35] Ahuja G and Morris Lampert C 2001 Strateg. Manag. J. 22 521
[36] Dunlap-Hinkler D, Kotabe M and Mudambi R 2010 Strateg. Entrepreneurship J. 4 106
[37] Coad A, Segarra A and Teruel M 2016 Res. Policy 45 387
[38] Petersen A M, Riccaboni M, Stanley H E and Pammolli F 2012 Proc. Natl. Acad. Sci. USA 109 5213
[39] Sørensen J B and Stuart T E 2000 Adm. Sci. Q. 45 81
[40] Lin J 1991 IEEE Transactions on Inf. Theory 37 145
[41] Kullback S and Leibler R A 1951 Ann. Math. Stat. 22 79
[42] He Z L, Tong T W, Zhang Y and He W 2018 Sci. Data 5 180042
[1] Stability analysis of hydro-turbine governing system based on machine learning
Yuansheng Chen(陈元盛) and Fei Tong(仝飞). Chin. Phys. B, 2021, 30(12): 120509.
[2] Nonequilibrium free energy and information flow of a double quantum-dot system with Coulomb coupling
Zhiyuan Lin(林智远), Tong Fu(付彤), Juying Xiao(肖菊英), Shanhe Su(苏山河), Jincan Chen(陈金灿), and Yanchao Zhang(张艳超). Chin. Phys. B, 2021, 30(8): 080501.
[3] Collective stochastic resonance behaviors of two coupled harmonic oscillators driven by dichotomous fluctuating frequency
Lei Jiang(姜磊), Li Lai(赖莉), Tao Yu(蔚涛), Maokang Luo(罗懋康). Chin. Phys. B, 2021, 30(6): 060502.
[4] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[5] Manufacturing enterprise collaboration network: An empirical research and evolutionary model
Ji-Wei Hu(胡辑伟), Song Gao(高松), Jun-Wei Yan(严俊伟), Ping Lou(娄平), Yong Yin(尹勇). Chin. Phys. B, 2020, 29(8): 088901.
[6] Inverse Ising techniques to infer underlying mechanisms from data
Hong-Li Zeng(曾红丽), Erik Aurell. Chin. Phys. B, 2020, 29(8): 080201.
[7] Evolution of the Internet AS-level topology:From nodes and edges to components
Xiao Liu(刘晓), Jinfa Wang(王进法), Wei Jing(景薇), Menno de Jong, Jeroen S Tummers, Hai Zhao(赵海). Chin. Phys. B, 2018, 27(12): 120501.
[8] Enhancement of water self-diffusion at super-hydrophilic surface with ordered water
Xiao-Meng Yu(于晓萌), Chong-Hai Qi(齐崇海), Chun-Lei Wang(王春雷). Chin. Phys. B, 2018, 27(6): 060101.
[9] A new control method based on the lattice hydrodynamic model considering the double flux difference
Shunda Qin(秦顺达), Hongxia Ge(葛红霞), Rongjun Cheng(程荣军). Chin. Phys. B, 2018, 27(5): 050503.
[10] The most common friend first immunization
Fu-Zhong Nian(年福忠), Cha-Sheng Hu(胡茶升). Chin. Phys. B, 2016, 25(12): 128702.
[11] Modeling the capability of penetrating a jammed crowd to eliminate freezing transition
Mohammed Mahmod Shuaib. Chin. Phys. B, 2016, 25(5): 050501.
[12] Empirical investigation of topological and weighted properties of a bus transport network from China
Shu-Min Feng(冯树民), Bao-Yu Hu(胡宝雨), Cen Nie(聂涔), Xiang-Hao Shen(申翔浩), Yu-Sheng Ci(慈玉生). Chin. Phys. B, 2016, 25(3): 030504.
[13] Model-based predictive controller design for a class of nonlinear networked systems with communication delays and data loss
An Bao-Ran, Liu Guo-Ping. Chin. Phys. B, 2014, 23(8): 080202.
[14] Statistical physics of human beings in games:Controlled experiments
Liang Yuan, Huang Ji-Ping. Chin. Phys. B, 2014, 23(7): 078902.
[15] An improved car-following model with consideration of the lateral effect and its feedback control research
Zheng Ya-Zhou, Zheng Peng-Jun, Ge Hong-Xia. Chin. Phys. B, 2014, 23(2): 020503.
No Suggested Reading articles found!