Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120516    DOI: 10.1088/1674-1056/ac16cc
Special Issue: SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies Prev   Next  

Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay

Guoyuan Qi(齐国元) and Zimou Wang(王子谋)
Tianjin Key Laboratory of Intelligent Control of Electrical Equimpment, Tiangong University, Tianjin 300387, China
Abstract  The firing of a neuron model is mainly affected by the following factors:the magnetic field, external forcing current, time delay, etc. In this paper, a new time-delayed electromagnetic field coupled dual Hindmarsh-Rose neuron network model is constructed. A magnetically controlled threshold memristor is improved to represent the self-connected and the coupled magnetic fields triggered by the dynamic change of neuronal membrane potential for the adjacent neurons. Numerical simulation confirms that the coupled magnetic field can activate resting neurons to generate rich firing patterns, such as spiking firings, bursting firings, and chaotic firings, and enable neurons to generate larger firing amplitudes. The study also found that the strength of magnetic coupling in the neural network also affects the number of peaks in the discharge of bursting firing. Based on the existing medical treatment background of mental illness, the effects of time lag in the coupling process against neuron firing are studied. The results confirm that the neurons can respond well to external stimuli and coupled magnetic field with appropriate time delay, and keep periodic firing under a wide range of external forcing current.
Keywords:  bi-Hindmarsh and Rose (HR) neuron model      memristor      magnetic coupling      time delay  
Received:  29 April 2021      Revised:  18 July 2021      Accepted manuscript online:  22 July 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.15.-v (Biomolecules: structure and physical properties)  
  87.15.A- (Theory, modeling, and computer simulation)  
  84.35.+i (Neural networks)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61873186).
Corresponding Authors:  Guoyuan Qi     E-mail:  guoyuanqisa@qq.com

Cite this article: 

Guoyuan Qi(齐国元) and Zimou Wang(王子谋) Modeling and dynamics of double Hindmarsh-Rose neuron with memristor-based magnetic coupling and time delay 2021 Chin. Phys. B 30 120516

[1] Bertram R, Butte M J, Kiemel T and Sherman A 1995 B. Math. Biol. 57 413
[2] Ma J and Tang J 2017 Nonlinear Dyn. 89 1569
[3] Xu Y, Ma J, Zhan X, Yang L and Jia Y 2019 Cogn. Neurodyn. 13 601
[4] Bao B, Yang Q and Zhu D 2020 Nonlinear Dyn. 99 2339
[5] Corinto F, Ascoli A and Lanza V 2011 The 2011 International Joint Conference on Neural Networks 2402
[6] Ren G, Xu Y and Wang C 2017 Nonlinear Dyn. 88 893
[7] Yu H J and Tong W J 2009 Acta Phys. Sin. 58 2977 (in Chinese)
[8] Yu Y, Hao Y and Wang Q 2020 Neural networks 122 308
[9] Jeyasothy A, Sundaram S and Sundararajan N 2018 IEEE Trans. Neural. Netw. Learn Syst. 30 1231
[10] Xu Y, Liu M H. Zhu Z G and Ma J 2020 Chin. Phys. B 29 098704
[11] Hodgkin A L and Huxley A F 1952 The Journal of Physiology 117 500
[12] Fitzhugh R 1961 Biophys. J. 1 445
[13] Hindmarsh J L and Rose R M 1982 Nature 296 162
[14] Hindmarsh J L and Rose R M 1982 Nature 299 375
[15] Hindmarsh J L and Rose R M 1984 Proceedings of the Royal Society B:Biological Sciences 221 87
[16] Chua L 1971 IEEE Trans. Circuits Syst. 18 507
[17] Bao B, Qian H, Xu Q, Chen M, Wang J and Yu Y 2017 Frontiers Comput. Neurosci. 11 81
[18] Lin H and Wang C 2020 Appl. Math. Comput. 369 124840
[19] Wu F, Ma J and Zhang G 2019 Appl. Math. Comput. 347 590
[20] Ma J, Wu F Q and Wang C N 2017 Mod. Phys. B 31 1650251
[21] Wu J, Xu Y and Ma J 2017 Plos One 12 1
[22] Lv M and Ma J 2016 Neurocomputing 205 375
[23] Bao H, Hu A, Liu W and Bao B C 2019 IEEE Trans. Neural. Netw. Learn Syst. 117 500
[24] Lin H and Wang C H 2020 Nonlinear Dyn. 99 2369
[25] Lin H, Wang C H, Sun Y C and Wei Yao 2020 Nonlinear Dyn. 100 3667
[26] Ren G D, Wu G and Ma J 2015 Acta Phys. Sin. 64 058702 (in Chinese)
[27] Lv M, Wang C and Ren G 2016 Nonlinear Dyn. 85 1479
[28] Eshraghian K, Kavehei O and Cho K R 2012 Proc. IEEE 100 1991
[29] Ostojic S, Brunel N and Hakim V 2009 J. Neurosci. 29 10234
[30] Mannan Z I, Adhikari S P, Yang C, Budhathoki R K, Kim H and Chua L 2019 IEEE Trans. Neural. Netw. Learn Syst. 30 3458
[31] Tan Y M and Wang C H 2020 Chaos 30 053118
[32] Ma J, Lv M and Zhou P 2017 P. Math. Comput. 307 321
[33] Ma J, Wu F Q and Wang C N 2016 Mod. Phys. B. 31 1650251
[34] Parastesh F, Rajagopal K and Karthikeyan A 2018 Cogn. Neurodynamics. 12 607
[35] Usha K and Subha P A 2019 Chin. Phys. B 28 020502
[36] Xu Y, Jia Y, Ma J, Alsaedi A and Ahmad B 2017 Chaos, Solitons, and Fractals 104 435
[37] Xu F, Zhang J, Fang T, Huang S and Wang M 2018 Nonlinear Dyn. 92 1395
[38] Bao H, Liu W and Hu A 2019 Nonlinear Dyn. 95 43
[39] Qin H X, Ma J and Jin W 2014 Sci. Chin. Technol. Sci. 57 936
[40] Han F, Wang Z J, Fan H and Gong T 2015 Chin. Phys. Lett. 32 040502
[41] Lakshmanan S, Lim C P, Nahavandi S, Prakash M and Balasubramaniam P 2016 IEEE Trans. Neural. Netw. Learn Syst. 28 1953
[42] Steur E, Murguia C and Fey R H B 2016 Int. J. Bifurcat. Chaos 26 1
[43] Huang S F, Zhang J Q, Wang M S and Hu C K 2018 Physica A 499 88
[44] Fan D and Wang Q 2018 Phys. Rev. E 98 052414
[45] Fan D, Zhang L and Wang Q 2018 Nonlinear Dyn. 94 2807
[46] Izhikevich E M 2000 Bifurc. Chaos 10 1171
[47] Yang M, Liu Z, Li L, Xu Y, Liu H, Gu H and Ren W 2009 Bifurc. Chaos 19 453
[48] Skokos Ch 2010 Lect. Notes Phys. 790 63
[49] Schrader L M, Stem J M and Koski L 2004 Clin. Neurophysiol. 115 2728
[50] Ardolino G, Bossi B, Barbieri S and Priori A 2005 J. Physiol. 568 653
[51] Theodore W H 2003 Epilepsy Curr. 3 191
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Effect of autaptic delay signal on spike-timing precision of single neuron
Xuan Ma(马璇), Yaya Zhao(赵鸭鸭), Yafeng Wang(王亚峰), Yueling Chen(陈月玲), and Hengtong Wang(王恒通). Chin. Phys. B, 2023, 32(3): 038703.
[3] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[4] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[7] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[8] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[9] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[10] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[11] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[12] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[13] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[14] Inferring interactions of time-delayed dynamic networks by random state variable resetting
Changbao Deng(邓长宝), Weinuo Jiang(蒋未诺), and Shihong Wang(王世红). Chin. Phys. B, 2022, 31(3): 030502.
[15] Review on typical applications and computational optimizations based on semiclassical methods in strong-field physics
Xun-Qin Huo(火勋琴), Wei-Feng Yang(杨玮枫), Wen-Hui Dong(董文卉), Fa-Cheng Jin(金发成), Xi-Wang Liu(刘希望), Hong-Dan Zhang(张宏丹), and Xiao-Hong Song(宋晓红). Chin. Phys. B, 2022, 31(3): 033101.
No Suggested Reading articles found!