Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(12): 128702    DOI: 10.1088/1674-1056/25/12/128702
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The most common friend first immunization

Fu-Zhong Nian(年福忠), Cha-Sheng Hu(胡茶升)
School of Computer & Communication, Lanzhou University of Technology, Lanzhou 730050, China
Abstract  

In this paper, a standard susceptible-infected-recovered-susceptible(SIRS) epidemic model based on the Watts-Strogatz (WS) small-world network model and the Barabsi-Albert (BA) scale-free network model is established, and a new immunization scheme–“the most common friend first immunization”is proposed, in which the most common friend's node is described as being the first immune on the second layer protection of complex networks. The propagation situations of three different immunization schemes–random immunization, high-risk immunization, and the most common friend first immunization are studied. At the same time, the dynamic behaviors are also studied on the WS small-world and the BA scale-free network. Moreover, the analytic and simulated results indicate that the immune effect of the most common friend first immunization is better than random immunization, but slightly worse than high-risk immunization. However, high-risk immunization still has some limitations. For example, it is difficult to accurately define who a direct neighbor in the life is. Compared with the traditional immunization strategies having some shortcomings, the most common friend first immunization is effective, and it is nicely consistent with the actual situation.

Keywords:  epidemic      common friend      immunization      SIRS  
Received:  29 April 2016      Revised:  20 July 2016      Accepted manuscript online: 
PACS:  87.23.Cc (Population dynamics and ecological pattern formation)  
  87.23.Ge (Dynamics of social systems)  
  87.23.Kg (Dynamics of evolution)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61263019), the Program for International Science and Technology Cooperation Projects of Gansu Province, China (Grant No. 144WCGA166), and the Program for Longyuan Young Innovation Talents and the Doctoral Foundation of Lanzhou University of Technology, China.

Corresponding Authors:  Fu-Zhong Nian     E-mail:  gdnfz@lut.cn

Cite this article: 

Fu-Zhong Nian(年福忠), Cha-Sheng Hu(胡茶升) The most common friend first immunization 2016 Chin. Phys. B 25 128702

[1] Chu X W, Zhang Z Z, Guan J H and Zhou S G 2011 Physica A 390 471
[2] Wang W, Tang M, Zhang H F, Gao H, Do Y and Liu Z H 2014 Phys. Rev. E 90 042803
[3] Wang Y B and Cai W D 2015 China Commun. 12 101
[4] Li C H, Tsai C C and Yang SY 2014 Commun. Nonlinear Sci. Num. Simul. 19 1042
[5] Gao Z M, Gu J and Li W 2012 Chin. Phys. Lett. 29 028902
[6] Hu Y, Min LQ and Kuang Y 2015 Appl. Anal. 94 2308
[7] Zhang X T, Ge B F, Wang Q, Jiang J, You H L and Chen Y W 2015 Math. Probl. Eng. 2 1
[8] Zhang H F, Michael S, Fu X C and Wang B H 2009 Chin. Phys. B 18 3639
[9] Lu Y L, Jiang G P and Song Y R 2012 Chin. Phys. B 21 100207
[10] Rambal V, Muller K, Dang-Heine C, Sattler A, Dziubianau M, Weist B, Luu S H, Stoyanova A, Nickel P, Thiel A, Neumann A, Schweiger B, Reinke P and Babel N 2014 Med. Microbiol. Immun. 203 35
[11] Bertran K, Perez-Ramirez E, Busquets N, Dolz R, Ramis A, Darji A, Abad F X, Valle R, Chaves A, Vergara-Alert J, Barral M, Hofle U and Majo N 2011 Vet. Res. 42 24
[12] Qian S S, Guo W, Xing J N, Qin Q Q, Ding Z W, Chen F F, Peng Z H and Wang L 2014 Aids 28 1805
[13] Coghlan A 2012 New. Sci. 216 10
[14] Song Y R, Jiang G P and Gong Y W 2013 Chin. Phys. B 22 040205
[15] Wu D Y, Zhao Y P, Zheng M H, Zhou J and Liu Z H 2016 Chin. Phys. B 25 028701
[16] Gong Y W, Song Y R and Jiang G P 2012 Chin. Phys. B 21 010205
[17] Wu Q C, Fu X C and Yang M 2011 Chin. Phys. B 20 046401
[18] Erdos P and Rényi A 1960 Publ. Math. Inst. Hungar. Acad. Sci. 5 17
[19] Barrat A and Weigt M 2000 Eur. Phys. J. B 13 547
[20] Newman M E and Watts D J 1999 Phys. Lett. A 263 341
[21] Warren C P, Sander L M and Sokolov I M 2002 Phys. Rev. E 66 056105
[22] Moreno Y, Pastor-Satorras R and Vespignani A 2002 Eur. Phys. J. B 26 521
[23] Zhonghua L, Shujing G and Lansun C 2003 Acta Math. Sci. 23 440
[24] Ling L, Jiang G and Long T 2015 Appl. Math. Modell. 39 5579
[25] Li K Z, Xu Z P, Zhu G H and Ding Y 2014 Chin. Phys. B 23 118904
[26] Zhu L and Hu H 2015 Adv. Differ. Equ-Ny. 2015 330
[27] Hieu N, Du N, Auger P and Dang N 2015 Math. Model. Nat. Pheno. 10 56
[28] Buono C and Braunstein L A 2015 Europhys. Lett. 109 26001
[29] Wu Q C and Fu X C 2016 Physica A 444 576
[30] Huang B, Zhao X Y, Qi K, Tang M and Younghae D 2013 Acta Phys. Sin. 62 218902 (in Chinese)
[31] Han Q X, Wang Z G, Gao R M and Fan X M 2014 Chin. Phys. B 23 090201
[32] Zhang H F, Li K Z, Fu X C and Wang B H 2009 Chin. Phys. Lett. 26 068901
[33] Li Q, Zhang B H, Cui L G, Fan Z and Vasilakos A V 2012 Chin. Phys. B 21 050205
[34] Callaway D S, Newman M E, Strogatz S H and Watts D J 2000 Phys. Rev. Lett. 85 5468
[35] Pastor-Satorras R and Vespignani A 2002 Phys. Rev. E 65 036104
[36] Cohen R, Havlin S and Ben-Avraham D 2003 Phys. Rev. Lett. 91 247901
[37] Wang W, Tang M, Yang H, Younghae D, Lai Y C and Lee GyuWon 2014 Sci. Rep-UK 4 5097
[38] Liu Q H, Wang W, Tang M and Zhang H F 2016 Sci. Rep-UK 6 25617
[39] Madar N, Kalisky T, Cohen R, Avraham-ben D and Havlin S 2004 Eur. Phys. J. B-Condens. Matter Complex Syst. 38 269
[40] Nian F and Wang X 2010 J. Theor. Biol. 264 77
[41] Nian F and Wang K 2014 Nonlinear. Dyn. 78 1729
[1] Correlation and trust mechanism-based rumor propagation model in complex social networks
Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青). Chin. Phys. B, 2022, 31(5): 050202.
[2] Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring
Xiao-Long Peng(彭小龙) and Yi-Dan Zhang(张译丹). Chin. Phys. B, 2021, 30(5): 058901.
[3] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[4] Direct immune-SCIR public-opinion propagation model based on real-time online users
Yun-Ming Wang(王运明), Tian-Yi Guo(郭天一)†, Wei-Dong Li(李卫东)‡, and Bo Chen(陈波). Chin. Phys. B, 2020, 29(10): 100204.
[5] Reverse-feeding effect of epidemic by propagators in two-layered networks
Dayu Wu(吴大宇), Yanping Zhao(赵艳萍), Muhua Zheng(郑木华), Jie Zhou(周杰), Zonghua Liu(刘宗华). Chin. Phys. B, 2016, 25(2): 028701.
[6] Epidemic spreading on random surfer networks with infected avoidance strategy
Yun Feng(冯运), Li Ding(丁李), Yun-Han Huang(黄蕴涵), Zhi-Hong Guan(关治洪). Chin. Phys. B, 2016, 25(12): 128903.
[7] Stability analysis of multi-group deterministic and stochastic epidemic models with vaccination rate
Wang Zhi-Gang (王志刚), Gao Rui-Mei (高瑞梅), Fan Xiao-Ming (樊晓明), Han Qi-Xing (韩七星). Chin. Phys. B, 2014, 23(9): 090201.
[8] Global stability of a susceptible-infected-susceptible epidemic model on networks with individual awareness
Li Ke-Zan (李科赞), Xu Zhong-Pu (徐忠朴), Zhu Guang-Hu (祝光湖), Ding Yong (丁勇). Chin. Phys. B, 2014, 23(11): 118904.
[9] Epidemic propagation on adaptive coevolutionary networks with preferential local-world reconnecting strategy
Song Yu-Rong (宋玉蓉), Jiang Guo-Ping (蒋国平), Gong Yong-Wang (巩永旺). Chin. Phys. B, 2013, 22(4): 040205.
[10] Dynamical analysis of a sexually transmitted disease model on complex networks
Yuan Xin-Peng (原新鹏), Xue Ya-Kui (薛亚奎), Liu Mao-Xing (刘茂省). Chin. Phys. B, 2013, 22(3): 030207.
[11] Variations of the epidemic distribution with some characteristic parameters
Liu Zhen-Zhen(刘真真), Wang Xing-Yuan(王兴元), and Wang Mao-Ji(王茂基) . Chin. Phys. B, 2012, 21(7): 078901.
[12] Immunizations on small worlds of tree-based wireless sensor networks
Li Qiao(李峤), Zhang Bai-Hai(张百海), Cui Ling-Guo(崔灵果), Fan Zhun(范衠), and Athanasios V. Vasilakos . Chin. Phys. B, 2012, 21(5): 050205.
[13] Epidemic spreading on a scale-free network with awareness
Lu Yan-Ling (鲁延玲), Jiang Guo-Ping (蒋国平), Song Yu-Rong (宋玉蓉). Chin. Phys. B, 2012, 21(10): 100207.
[14] Epidemic spreading in scale-free networks including the effect of individual vigilance
Gong Yong-Wang(巩永旺), Song Yu-Rong(宋玉蓉), and Jiang Guo-Ping(蒋国平) . Chin. Phys. B, 2012, 21(1): 010205.
[15] Turing pattern selection in a reaction–diffusion epidemic model
Wang Wei-Ming(王玮明), Liu Hou-Ye(刘厚业), Cai Yong-Li (蔡永丽), and Li Zhen-Qing (李镇清) . Chin. Phys. B, 2011, 20(7): 074702.
No Suggested Reading articles found!