Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(5): 050602    DOI: 10.1088/1674-1056/abe22a
GENERAL Prev   Next  

Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping

Lei Han(韩蕾)1, Fang Fang(房芳)2,†, Wei-Liang Chen(陈伟亮)2, Kun Liu(刘昆)2, Shao-Yang Dai(戴少阳)2, Ya-Ni Zuo(左娅妮)2, and Tian-Chu Li(李天初)1,2,‡
1 School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
2 Key Laboratory of Time and Frequency Standards, National Institute of Metrology(NIM), Beijing 100029, China
Abstract  To improve the signal to noise ratio (SNR) and the short-term stability of cesium atomic fountain clocks, the work of two-laser optical pumping is presented theoretically and experimentally. The short-term stability of the NIM6 fountain clock has been improved by preparing more cold atoms in the $\vert F=4, m_{F}=0\rangle$ clock state with a shortened cycle time. Two $\pi $-polarized laser beams overlapped in the horizontal plane have been applied after launching, one is resonant with $\vert F=4\rangle \to \vert F'=4\rangle$ transition and the other is resonant with $\vert F=3\rangle \to \vert F'=4\rangle$ transition. With optical pumping, the population accumulated in the $\vert m_{F}=0\rangle$ clock state is improved from 11% to 63%, and the detection signal is increased by a factor of 4.2, the SNR of the clock transition probability and the short-term stability are also improved accordingly.
Keywords:  optical pumping      atomic fountain clock      spin-polarization      short-term stability  
Received:  21 December 2020      Revised:  11 January 2021      Accepted manuscript online:  02 February 2021
PACS:  06.30.Ft (Time and frequency)  
  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  32.10.Fn (Fine and hyperfine structure)  
  32.80.Xx (Level crossing and optical pumping)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11873044).
Corresponding Authors:  Fang Fang, Tian-Chu Li     E-mail:  fangf@nim.ac.cn;litch@nim.ac.cn

Cite this article: 

Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初) Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping 2021 Chin. Phys. B 30 050602

[1] Bauch A, Weyers S, Piester D, Stalimuniene E and Yang W 2012 Metrologia 49 180
[2] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
[3] Wolf P, Chapelet F, Bize S and Clairon A 2006 Phys. Rev. Lett. 96 060801
[4] Dai S Y, Zheng F S, Liu K, Chen W L, Lin Y G, Li T C and Fang F 2021 Chin. Phys. B 30 013701
[5] Vian C, Rosenbusch P, Marion H, Bize S, Cacciapuoti L, Zhang S, Abgrall M, Chambon D, Maksimovic I, Laurent P, Santarelli G, Luiten S, Tobar M and Salomon C 2005 IEEE Trans. Instrum. Meas. 54 833
[6] Weyers S, Gerginov V, Kazda M, Rahm J, Lipphardt B, Dobrev G and Gibble K 2018 Metrologia 55 789
[7] Costanzo G A, Siccardi M, Barychev V and Marchi A D 2000 IEEE Trans.Ultrason. Ferroelectr. Freq. Control 47 249
[8] Yang C, Zuo G H, Tian Z Z, Zhang Y C and Zhang T C 2019 Chin. Phys. B 28 117601
[9] Walker T G and Happer W 1997 Rev. Mod. Phys. 69 629
[10] Kastler A 1957 J. Opt. Soc. Am. 47 460
[11] Vanier J and Audoin C 2005 Metrologia 42 S31
[12] Szymaniec K, Noh H R, Park S E and Takamizawa A 2013 Appl. Phys. B 111 527
[13] Szymaniec K and Park S E 2011 IEEE Trans. Instrum. Meas. 60 2475
[14] Domenico G D, Devenoges L, Dumas C and Thomann P 2010 Phys. Rev. A 82 053417
[15] Takamizawa A, Yanagimachi S, Tanabe T, Hagimoto K, Hirano I, Watabe K I, Ikegami T and Hartnett J G 2015 IEEE Trans. Instrum. Meas. 64 2504
[16] Tremblay P and Jacques C 1990 Phys. Rev. A 41 4989
[17] Fang F, Chen W L, Liu K, Liu N F, Suo R and Li T C 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, April 12-16, 2015 Denver, USA, pp. 492-494
[18] Fang F, Chen W L, Liu K, Liu N F, Han L and Li T C 2019 URSI Asia-pacific Radio Science Conference (AP-RASC), March 9-15, 2019 New Delhi, India, 8738417
[19] Fang F, Chen W L, Liu K, Liu N F, Dai S Y, Han L and Li T C 2017 32nd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), August 19-26, 2017 Montreal, Canada, 8105340
[20] Fang F, Chen W L, Liu K, Dai S Y, Liu N F, Han L, Zheng F S and Li T C 2019 Joint Conference of the IEEE International Frequency Control Symposium and the European Frequency and Time Forum, April 14-18, 2019 Orlando, USA, 8856067
[21] Dai S Y, Fang F, Liu K, Chen W L, Liu N F, Cao S Y and Li T C 2020 AIP Adv. 10 065118
[22] Avila G, Giordano V, Candelier V, Clercq E D, Theobald G and Cerez P 1987 Phys. Rev. A 36 3719
[23] Steck D A http://steck.us/alkalidata (revision 2.1.2, 12 August 2009)
[24] Jefferts S R, Heavner T P, Shirley J and Paker T E 2002 Frequency Standards and Metrology, pp. 72-79
[25] Santarelli G, Laurent Ph, Lemonde P, Clairon A, Mann A G, Chang S, Luiten A N and Salomon C 1999 Phys. Rev. Lett. 82 4619
[26] Szymaniec K, Park S E, Marra G and Chalupczak W 2010 Metrologia 47 363
[27] Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G and Wineland D J 1993 Phys. Rev. A 47 3554
[28] Wynands R and Weyers S 2005 Metrologia 42 S64
[29] Santarelli G, Audoin C, Makdissi A, Laurent Ph, Dick G J and Clairon A 1998 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45 887
[1] An effective pumping method for increasing atomic utilization in a compact cold atom clock
Xin-Chuan Ouyang(欧阳鑫川), Bo-Wen Yang(杨博文), Jian-Liao Deng(邓见辽), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hang-Hang Qi(亓航航), Qing-Qing Hu(胡青青), and Hua-Dong Cheng(成华东). Chin. Phys. B, 2021, 30(8): 083202.
[2] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[3] Evaluation of second-order Zeeman frequency shift in NTSC-F2
Jun-Ru Shi(施俊如), Xin-Liang Wang(王心亮), Yang Bai(白杨), Fan Yang(杨帆), Yong Guan(管勇), Dan-Dan Liu(刘丹丹), Jun Ruan(阮军), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2021, 30(7): 070601.
[4] Cold atom clocks and their applications in precision measurements
Shao-Yang Dai(戴少阳), Fa-Song Zheng(郑发松), Kun Liu(刘昆), Wei-Liang Chen(陈伟亮), Yi-Ge Lin(林弋戈), Tian-Chu Li(李天初), and Fang Fang(房芳). Chin. Phys. B, 2021, 30(1): 013701.
[5] Polarization and fundamental sensitivity of 39K (133Cs)-85Rb-21Neco-magnetometers
Jian-Hua Liu(刘建华), Dong-Yang Jing(靖东洋), Lin Zhuang(庄琳), Wei Quan(全伟), Jiancheng Fang(房建成), Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(4): 043206.
[6] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[7] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[8] Parameter analysis for a nuclear magnetic resonance gyroscope based on bf133Cs-129Xe/131Xe
Da-Wei Zhang(张大伟), Zheng-Yi Xu(徐正一), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(2): 023201.
[9] Study of the optimal duty cycle and pumping rate for square-wave amplitude-modulated Bell-Bloom magnetometers
Mei-Ling Wang(王美玲), Meng-Bing Wang(王梦冰), Gui-Ying Zhang(张桂迎), Kai-Feng Zhao(赵凯锋). Chin. Phys. B, 2016, 25(6): 060701.
[10] Theoretical simulation of 87Rb absorption spectrum in a thermal cell
Hong Cheng(成红), Shan-Shan Zhang(张珊珊), Pei-Pei Xin(辛培培), Yuan Cheng(程元), Hong-Ping Liu(刘红平). Chin. Phys. B, 2016, 25(11): 114203.
[11] Recent improvements on the atomic fountain clock at SIOM
Du Yuan-Bo, Wei Rong, Dong Ri-Chang, Zou Fan, Wang Yu-Zhu. Chin. Phys. B, 2015, 24(7): 070601.
[12] Design and test of the microwave cavity in an optically-pumped Rubidium beam frequency standard
Liu Chang, Wang Yan-Hui. Chin. Phys. B, 2015, 24(1): 010602.
[13] Modulating magnetism of nitrogen-doped zigzag graphene nanoribbons
Zhao Shang-Qian, Lü Yan, Lü Wen-Gang, Liang Wen-Jie, Wang En-Ge. Chin. Phys. B, 2014, 23(6): 067305.
[14] Off-resonant double-resonance optical-pumping spectra and their application in a multiphoton cesium magneto-optical trap
Yang Bao-Dong, He Jun, Wang Jun-Min. Chin. Phys. B, 2014, 23(5): 054205.
[15] Effect of optical pumping on the momentum relaxation time of graphene in the terahertz range
Zuo Zhi-Gao, Wang Ping, Ling Fu-Ri, Liu Jin-Song, Yao Jian-Quan. Chin. Phys. B, 2013, 22(9): 097304.
No Suggested Reading articles found!