Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(6): 060701    DOI: 10.1088/1674-1056/25/6/060701
GENERAL Prev   Next  

Study of the optimal duty cycle and pumping rate for square-wave amplitude-modulated Bell-Bloom magnetometers

Mei-Ling Wang(王美玲)1,2, Meng-Bing Wang(王梦冰)1,2, Gui-Ying Zhang(张桂迎)1,2, Kai-Feng Zhao(赵凯锋)1,2
1 Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, Fudan University, Shanghai 200433, China;
2 Institute of Modern Physics, Department of Nuclear Science and Technology, Fudan University, Shanghai 200433, China
Abstract  

We theoretically and experimentally study the optimal duty cycle and pumping rate for square-wave amplitude-modulated Bell-Bloom magnetometers. The theoretical and the experimental results are in good agreement for duty cycles and corresponding pumping rates ranging over 2 orders of magnitude. Our study gives the maximum field response as a function of duty cycle and pumping rate. Especially, for a fixed duty cycle, the maximum field response is obtained when the time averaged pumping rate, which is the product of pumping rate and duty cycle, is equal to the transverse relaxation rate in the dark. By using a combination of small duty cycle and large pumping rate, one can increase the maximum field response by up to a factor of 2 or π/2, relative to that of the sinusoidal modulation or the 50% duty cycle square-wave modulation respectively. We further show that the same pumping condition is also practically optimal for the sensitivity due to the fact that the signal at resonance is insensitive to the fluctuations of pumping rate and duty cycle.

Keywords:  optical pumping      spin relaxation      power-broadening      magnetometry  
Received:  04 December 2015      Revised:  04 February 2016      Accepted manuscript online: 
PACS:  07.55.Ge (Magnetometers for magnetic field measurements)  
  32.80.Xx (Level crossing and optical pumping)  
  76.60.Es (Relaxation effects)  
  76.70.Hb (Optically detected magnetic resonance (ODMR))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11074050).

Corresponding Authors:  Kai-Feng Zhao     E-mail:  zhaokf@fudan.edu.cn

Cite this article: 

Mei-Ling Wang(王美玲), Meng-Bing Wang(王梦冰), Gui-Ying Zhang(张桂迎), Kai-Feng Zhao(赵凯锋) Study of the optimal duty cycle and pumping rate for square-wave amplitude-modulated Bell-Bloom magnetometers 2016 Chin. Phys. B 25 060701

[1] Bell W E and Bloom A L 1961 Phys. Rev. Lett. 6 280
[2] Bell W E and Bloom A L 1961 Phys. Rev. Lett. 6 623
[3] Alexandrov E B, Auzinsh M, Budker D, Kimball D F, Rochester S M and Yashchuk V V 2005 J. Opt. Soc. Am. B 22 7
[4] Budker D and Romalis M 2007 Nat. Phys. 3 227
[5] Gawlik W, Krzemien L, Pustelny S, Sangla D, Zachorowski J, Graf M, Sushkov A O and Budker D 2006 Appl. Phys. Lett. 88 131108
[6] Huang H C, Dong H F, Hao H J and Hu X Y 2015 Chin. Phys. Lett. 32 098503
[7] Zhang J H, Liu Q, Zeng X J, Li J X and Sun W M 2012 Chin. Phys. Lett. 29 068501
[8] Budker D, Kimball D F, Yashchuk V V and Zolotorev M 2002 Phys. Rev. A 65 055403
[9] Jimenez-Martinez R, Griffith W C, Wang Y J, Knappe S, Kitching J, Smith K and Prouty M D 2010 IEEE Trans. Instrum. Meas. 59 372
[10] Ben-Kish A and Romalis M V 2010 Phys. Rev. Lett. 105 19
[11] Fescenko I, Knowles P, Weis A and Breschi E 2013 Opt. Express 21 15121
[12] Breschi E, Gruijc Z D, Knowles P and Weis A 2013 Phys. Rev. A 88 2
[13] Budker D, Kimball D F, Rochester S M, Yashchuk V V and Zolotorev M 2000 Phys. Rev. A 62 043403/1
[14] Pustelny S, Kimball D F J, Rochester S M, Yashchuk V V, Gawlik W and Budker D 2006 Phys. Rev. A 73 023817
[15] Pustelny S, Wojciechowski A, Gring M, Kotyrba M, Zachorowski J and Gawlik W 2008 J. Appl. Phys. 103 7
[16] Schultze V, Ijsselsteijn R, Scholtes T, Woetzel S and Meyer H G 2012 Opt. Express 20 28056
[17] Grujic Z D and Weis A 2013 Phys. Rev. A 88 11
[18] Jimenez-Martinez R, Griffith W C, Knappe S, Kitching J and Prouty M 2012 J. Opt. Soc. Am. B 29 3398
[19] Budker D and Kimball D F 2013 Optical magnetometry (New York: Cambridge University Press)
[20] Graf M T, Kimball D F, Rochester S M, Kerner K, Wong C, Budker D, Alexandrov E B, Balabas M V and Yashchuk V V 2005 Phys. Rev. A 72 23401
[21] Wackerle G, Appelt S and Mehring M 1991 Phys. Rev. A 43 242
[22] Savukov I M, Seltzer S J, Romalis M V and Sauer K L 2005 Phys. Rev. Lett. 95 063004
[23] Zhang G, Wei L, Wang M and Zhao K 2015 J. Appl. Phys. 117 043106
[24] Happer W and Tam A C 1977 Phys. Rev. A 16 1877
[25] Happer W 1972 Rev. Mod. Phys. 44 169
[26] Happer W 1970 Phys. Rev. B 1 2203
[27] Bernabeu E and Tornos J 1985 Nuovo Cimento D 5 315
[1] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[2] An effective pumping method for increasing atomic utilization in a compact cold atom clock
Xin-Chuan Ouyang(欧阳鑫川), Bo-Wen Yang(杨博文), Jian-Liao Deng(邓见辽), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hang-Hang Qi(亓航航), Qing-Qing Hu(胡青青), and Hua-Dong Cheng(成华东). Chin. Phys. B, 2021, 30(8): 083202.
[3] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[4] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[5] Polarization and fundamental sensitivity of 39K (133Cs)-85Rb-21Neco-magnetometers
Jian-Hua Liu(刘建华), Dong-Yang Jing(靖东洋), Lin Zhuang(庄琳), Wei Quan(全伟), Jiancheng Fang(房建成), Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(4): 043206.
[6] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[7] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[8] Parameter analysis for a nuclear magnetic resonance gyroscope based on bf133Cs-129Xe/131Xe
Da-Wei Zhang(张大伟), Zheng-Yi Xu(徐正一), Min Zhou(周敏), Xin-Ye Xu(徐信业). Chin. Phys. B, 2017, 26(2): 023201.
[9] Indirect pumping bell-bloom magnetometer
Meng-Bing Wang(王梦冰), Da-Fa Zhao(赵大法), Gui-Ying Zhang(张桂迎), Kai-Feng Zhao(赵凯锋). Chin. Phys. B, 2017, 26(10): 100701.
[10] Direct spin-phonon coupling of spin-flip relaxation in quantum dots
Ji-Wen Yin(尹辑文), Wei-Ping Li(李伟萍), Hong-Juan Li(李红娟), Yi-Fu Yu(于毅夫). Chin. Phys. B, 2017, 26(1): 017201.
[11] Theoretical simulation of 87Rb absorption spectrum in a thermal cell
Hong Cheng(成红), Shan-Shan Zhang(张珊珊), Pei-Pei Xin(辛培培), Yuan Cheng(程元), Hong-Ping Liu(刘红平). Chin. Phys. B, 2016, 25(11): 114203.
[12] Disorder-enhanced nuclear spin relaxation at Landau level filling factor one
Guan Tong (关童), Benedikt Friess, Li Yong-Qing (李永庆), Yan Shi-Shen (颜世申), Vladimir Umansky, Klaus von Klitzing, Jurgen H. Smet. Chin. Phys. B, 2015, 24(6): 067302.
[13] Design and test of the microwave cavity in an optically-pumped Rubidium beam frequency standard
Liu Chang (刘畅), Wang Yan-Hui (王延辉). Chin. Phys. B, 2015, 24(1): 010602.
[14] Off-resonant double-resonance optical-pumping spectra and their application in a multiphoton cesium magneto-optical trap
Yang Bao-Dong (杨保东), He Jun (何军), Wang Jun-Min (王军民). Chin. Phys. B, 2014, 23(5): 054205.
[15] Phase control of group-velocity-based biexciton coherence ina multiple quantum well nanostructure
Seyyed Hossein Asadpour, H. Rahimpour Soleimani. Chin. Phys. B, 2014, 23(10): 104205.
No Suggested Reading articles found!