Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(4): 048202    DOI: 10.1088/1674-1056/abc2c1
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles

Archana V1, Lakshmi Mohan1,2,†, Kathirvel P3, and Saravanakumar S4
1 Department of Sciences, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, India\vglue3pt; 2 Research and Development Center, Bharathiar University, Coimbatore-641046, Tamilnadu, India; 3 GRD Center for Materials Research, Department of Physics, P S G College of Technology, Coimbatore-641004, Tamilnadu, India; 4 Department of Physics, N S S College, Pandalam-689501, Kerala, India
Abstract  Tin oxide (SnO2) and iron-doped tin oxide (Sn1-xFexO2 , x = 0.05 wt%, 0.10 wt%) nanoparticles are synthesized by the simple sol-gel method. The structural characterization using x-ray diffraction (XRD) confirms tetragonal rutile phases of the nanoparticles. The variations in lattice parameters and relative intensity with Fe-doping concentration validate the incorporation of iron into the lattice. The compressive strain present in the lattice estimated by using peak profile analysis through using Williamson-Hall plot also exhibits the influence of grain boundary formation in the lattice. The radiative recombination and quenching observed in optical characterization by using photoluminescence spectrum (PL) and the shift in the band gap estimated from UV-visible diffused reflectance spectrum corroborate the grain boundary influence. Raman spectrum and the morphological analysis by using a field emission scanning electron microscope (FESEM) also indicate the formation of grain boundaries. The compositional analysis by using energy dispersive x-ray spectrum (EDAX) confirms Fe in the SnO2 lattice. The conductivity studies exhibit that the impendence increases with doping concentration increasing and the loss factor decreases at high frequencies with doping concentration increasing, which makes the Sn1-xFexO2 a potential candidate for device applications.
Keywords:  sol-gel      compressive strain      grain boundary      AC conductivity  
Received:  11 July 2020      Revised:  27 September 2020      Accepted manuscript online:  20 December 2020
PACS:  82.33.Ln (Reactions in sol gels, aerogels, porous media)  
  75.75.Fk (Domain structures in nanoparticles)  
  72.80.Ey (III-V and II-VI semiconductors)  
  74.62.Dh (Effects of crystal defects, doping and substitution)  
Corresponding Authors:  Corresponding author. E-mail: lakshmi_mohan@cb.amrita.edu   

Cite this article: 

Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles 2021 Chin. Phys. B 30 048202

1 Chavali M S and Nikolova M P 2019 SN Appl. Sci. 1 607
2 Bajpai N, Khan S A, Kher R S, Bramhe N, Dhoble S J and Tiwari A 2014 J. Lumin. 145 940
3 Jiang Q, Zhang X and You J 2018 Nano-Micro Small 14 1
4 Carre? no N L V, Nunes M R, Garcia I T S, Orlandi M O, Fajardo H V and Longo E 2009 J. Nanoparticle Res. 11 955
5 Batzill M and Diebold U 2005 Prog. Surf. Sci. 79 47
6 Doke S, Ganguly P and Mahamuni S2020 D Liq. Cryst. 00 1
7 Li H, Su Q, Kang J, Huang M, Feng M, Feng H, Huang P and Du G 2018 Mater. Lett. 217 276
8 Elango G and Roopan S M2016 E J. Photochem. Photobiol. B Biol. 155 34
9 Viet P Van, Thi C M and Hieu L Van2016 J. Nanomater. 2016
10 Li Z and Yi J 2017 Sensors Actuators B Chem. 243 96
11 Hermawan A, Asakura Y, Inada M and Yin S 2019 Ceram. Int. 45 15435
12 Xie H, Yin X, Chen P, Liu J, Yang C, Que W and Wang G 2019 Mater. Lett. 234 311
13 Karthik K, Revathi V and Tatarchuk T 2018 Mol. Cryst. Liq. Cryst. 671 17
14 Arularasu M V, Anbarasu M, Poovaragan S, Sundaram R, Kanimozhi K, Magdalane C M, Kaviyarasu K, Thema F T, Letsholathebe D, Mola G T and Maaza M 2017 J. Nanosci. Nanotechnol. 18 3511
15 Shanmugam N, Sathya T, Viruthagiri G, Kalyanasundaram C, Gobi R and Ragupathy S 2016 Appl. Surf. Sci. 360 283
16 Patil G E, Kajale D D, Gaikwad V B and Jain G H 2012 Int. Nano Lett. 2 2
17 Zhang J and Gao L2004 S J. Solid State Chem. 177 1425
18 Marzec A, Radecka M, Maziarz W, Kusior A and Pedzich Z2016 S J. Eur. Ceram. Soc. 36 2981
19 Voon C H, Foo K L, Lim B Y, Gopinath S C B and Al-Douri Y2020 Synthesis and Preparation of Metal-Oxide Powders, Metal Oxides ed Al-Douri(Elsevier) pp. 31-65
20 Al-Samarai R A, Mahmood A S and Al-Douri Y2020 5 Metal Oxides ed Al-Douri(Elsevier) pp. 83-99
21 Wang E, Chen P, Yin X, Wu Y and Que W2019 Sol. RRL 3 1
22 Alexandrescu R, Morjan I, Dumitrache F, Birjega R, Fleaca C, Luculescu C R, Popovici E, Soare I, Sandu I, Dutu E and Prodana G2010 J. Optoelectron. Adv. Mater. 12 599
23 Tian Z M, Yuan S L, He J H, Li P, Zhang S Q, Wang C H, Wang Y Q, Yin S Y and Liu L 2008 J. Alloys Compd. 466 26
24 Toloman D, Popa A, Stan M, Socaci C, Biris A R, Katona G, Tudorache F, Petrila I and Iacomi F 2017 Appl. Surf. Sci. 402 410
25 Dorneanu P P, Airinei A, Grigoras M, Fifere N, Sacarescu L, Lupu N and Stoleriu L 2016 J. Alloys Compd. 668 65
26 Mani R, Vivekanandan K and Vallalperuman K 2017 J. Mater. Sci. Mater. Electron. 28 4396
27 Kaur N, Abhinav, Singh G P, Singh V, Kumar S and Kumar D2016 AIP Conf. Proc. 1728 1
28 Barkley T K, Vastano J E, Applegate J R and Bakrania S D2012 Adv. Mater. Sci. Eng. 2012
29 Tran R, Xu Z, Zhou N, Radhakrishnan B, Luo J and Ong S P 2016 Acta Mater. 117 91
30 Ben Haj Othmen W, Sdiri N, Elhouichet H and Férid M 2016 Mater. Sci. Semicond. Process. 52 46
31 Garnet N S, Ghodsi V, Hutfluss L N, Yin P, Hegde M and Radovanovic P V 2017 J. Phys. Chem. C 121 1918
32 Cullity B D1956 Elements of X-ray Diffraction(Addison-Wesley Publishing)
33 Howard C J, Hunter B A and Kim D1998 43 241
34 Kaur J, Shah J, Kotnala R K and Verma K C2012 R Ceram. Int. 38 5563
35 Sabri N S, Deni M S M, Zakaria A and Talari M K 2012 Phys. Procedia 25 233
36 Asiltürk M and Sayílkan F2009 J. Photochem. Photobio.A 203 64
37 Liu C M, Fang L M, Zu X T and Zhou W L 2007 Chin. Phys. 16 95
38 Chang C H, Gong M, Dey S, Liu F and Castro R H R 2015 J. Phys. Chem. C 119 6389
39 Pereira M S, Ribeiro T S, Lima F A S, Santos L P M, Silva C B, Freire P T C and Vasconcelos I F2018 J. Nanoparticle Res. 20 2029
40 Rani S, Roy S C, Karar N and Bhatnagar M C 2007 Solid State Commun. 141 214
41 Rohith N M, Kathirvel P, Saravanakumar S and Mohan L2018 Optik (Stuttg.) 172 940
42 Bindu P and Thomas S2014 J. Theor. Appl. Phys. 8 123
43 A Narmada, P Kathirvel, Mohan L, S Saravanakumar, R Marnadu and J Chandrasekhar2020 Optik (Stuttg.) 202 163701
44 Muhammed Shafi P and Chandra Bose A2015 AIP Adv. 5 057137
45 Fang L M, Zu X T, Li Z J, Zhu S, Liu C M, Zhou W L and Wang L M 2008 J. Alloys Compd. 454 261
46 Winyayong A and Wongsaprom K2019 N Journal of Physics: Conference Series Vol. 1380
47 Mohan L, Sisupalan N, Ponnusamy K and Sadagopalan S 2020 J. Inorg. Organomet. Polym. Mater. 30 2626
48 Babu B, Neelakanta Reddy I, Yoo K, Kim D and Shim J 2018 Mater. Lett. 221 211
49 Adàn C, Bahamonde A, Fernàndez-Garc\'ía M and Mart\'ínez-Arias A 2007 Appl. Catal. B Environ. 72 11
50 Kumar V and Singh J K2010 Indian J. Pure Appl. Phys. 48 571
51 Haouanoh D, TalaIghil R Z, Toubane M, Bensouici F and Mokeddem K 2019 Mater. Res. Express 6 086422
52 Zadsar M, Fallah H R, Haji Mahmoodzadeh M, Hassanzadeh A and Ghasemi Varnamkhasti M 2012 Mater. Sci. Semicond. Process. 15 432
53 Gu F, Wang S F, Song C F, Lü M K, Qi Y X, Zhou G J, Xu D and Yuan D R 2003 Chem. Phys. Lett. 372 451
54 Gu F, Wang S F and Lu M K2004 Photoluminescence Properties of SnO2 Nanoparticles Synthesized by Sol-Gel Method 8119-23
55 Romano-rodr\imath A2001 T J. Appl. Phys. 90 1550
56 Das S, Kar S and Chaudhuri S2006 J. Appl. Phys. 99 058201
57 Ben W, Othmen H, Sieber B, Elhouichet H, Addad A, Gelloz B, Moreau M, Szunerits S and Boukherroub R 2018 Mater. Sci. Semicond. Process. 77 31
58 Abello L, Bochu B, Gaskov A, Koudryavtseva S, Lucazeau G and Roumyantseva M 1998 J. Solid State Chem. 135 78
59 Periyasamy M and Kar A 2020 J. Mater. Chem. C 8 4604
60 Shajira P S, Prabhu V G and Bushiri M J 2015 J. Phys. Chem. Solids 87 244
61 Moldovan D, Wolf D, Phillpot S R and Haslam A J2003 Trends in Nanoscale Mechanics pp. 35-59
62 Moldovan D, Wolf D and Phillpot S R 2001 Acta Mater. 49 3521
63 Barik Subrat, Choudhary R N and Singh A K 2011 Adv. Mater. Lett. 2 419
64 Chenari H M, Hassanzadeh A, Golzan M M, Sedghi H and Talebian M 2011 Curr. Appl. Phys. 11 409
65 Khan R and Fashu S 2017 J. Mater. Sci. Mater. Electron. 28 4333
66 Azam A, Ahmed A S, Ansari M S, M M S and Naqvi A H 2010 J. Alloys Compd. 506 237
67 Ashokkumar M and Muthukumaran S 2015 J. Lumin. 162 97
68 Wang C J, Wang Y and Gao C X 2019 Acta Phys. Sin. 68 206401 (in Chinese)
69 Marnadu R, Chandrasekaran J, Maruthamuthu S, Balasubramani V, Vivek P and Suresh R 2019 Appl. Surf. Sci. 480 308
70 Soitah T N, Yang C and Sun L 2011 Mater. Sci. Semicond. Process. 13 125
[1] Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors
Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡), and Feng Xue(薛峰). Chin. Phys. B, 2021, 30(9): 097402.
[2] Phase-field study of spinodal decomposition under effect of grain boundary
Ying-Yuan Deng(邓英远), Can Guo(郭灿), Jin-Cheng Wang(王锦程), Qian Liu(刘倩), Yu-Ping Zhao(赵玉平), and Qing Yang(杨卿). Chin. Phys. B, 2021, 30(8): 088101.
[3] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[4] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[5] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[6] 57Fe Mössbauer spectrometry: A powerful technique to analyze the magnetic and phase characteristics in RE-Fe-B permanent magnets
Lizhong Zhao(赵利忠), Xuefeng Zhang(张雪峰), Mi Yan(严密), Zhongwu Liu(刘仲武), and Jean-Marc Greneche. Chin. Phys. B, 2021, 30(1): 013302.
[7] Erratum to “Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method”
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2020, 29(3): 039901.
[8] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[9] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[10] Nucleation and growth of helium bubble at (110) twist grain boundaries in tungsten studied by molecular dynamics
Fang-Biao Li(李芳镖), Guang Ran(冉广), Ning Gao(高宁), Shang-Quan Zhao(赵尚泉), Ning Li(李宁). Chin. Phys. B, 2019, 28(8): 085203.
[11] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[12] Indium doping effect on properties of ZnO nanoparticles synthesized by sol-gel method
S Mourad, J El Ghoul, K Omri, K Khirouni. Chin. Phys. B, 2019, 28(4): 047701.
[13] Enhanced structural and magnetic properties of microwave sintered Li-Ni-Co ferrites prepared by sol-gel method
Nandeibam Nilima, M Maisnam, Sumitra Phanjoubam. Chin. Phys. B, 2019, 28(2): 026101.
[14] Shock-induced migration of asymmetry tilt grain boundary in iron bicrystal: A case study of Σ3 [110]
Xueyang Zhang(张学阳), Kun Wang(王昆), Jun Chen(陈军), Wangyu Hu(胡望宇), Wenjun Zhu(祝文军), Shifang Xiao(肖时芳), Huiqiu Deng(邓辉球), Mengqiu Cai(蔡孟秋). Chin. Phys. B, 2019, 28(12): 126201.
[15] Segregation behavior and embrittling effect of lanthanide La, Ce, Pr, and Nd at Σ3(111) tilt symmetric grain boundary in α-Fe
Jinli Cao(曹金利), Wen Yang(杨文), Xinfu He(贺新福). Chin. Phys. B, 2019, 28(12): 126802.
[1] ZHOU HAI-JUN, XU XIANG-YUAN, HUANG WEN, CHEN DIE-YAN. NEW AUTOIONIZING STATES NEAR THE FIRST IONIZATION LIMIT OF RARE EARTH ELEMENT Dy[J]. Acta Phys. Sin. (Overseas Edition), 1993, 2(12): 917 -924 .
[2] YUAN ZHI-LIANG, XU ZHONG-YING, XU JI-ZONG, ZHENG BAO-ZHEN, LUO CHANG-PING, YANG XIAO-PING, ZHANG PENG-HUA. PHOTOLUMINESCENCE STUDY OF GaAs/AlGaAs QUANTUM WELL HETEROSTRUCTURE INTERFACES[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(7): 523 -530 .
[3] He Lun-hua, Zhang Pan-lin, Yan Qi-wei. CRYSTAL STRUCTURE AND MAGNETIC PROPERTIES OF La1.2Sr1.8-xCaxMn2O7[J]. Chin. Phys., 2001, 10(9): 853 -856 .
[4] Zhao Peng, Zhang Shao-ying, Zhang Hong-wei, Yan A-ru, Shen Bao-gen. REMARKABLE IMPROVEMENT OF THE COERCIVITY OF TbMn6Sn6 COMPOUND BY MELT-SPINNING PROCESS[J]. Chin. Phys., 2001, 10(9): 869 -873 .
[5] Liu Bin, Liu Yan-Hong, Chen Yan-Ping, Yang Si-Ze, Wang Long. Structure and phase transition of a two-dimensional dusty plasma[J]. Chin. Phys., 2003, 12(7): 765 -770 .
[6] Bai Long, Zhang Rong, Weng Jia-Qiang, Luo Xiao-Shu, Fang Jin-Qing. Control of beam halo-chaos by sample function[J]. Chin. Phys., 2006, 15(6): 1226 -1230 .
[7] Guo Liu-Xiao, Hu Man-Feng, Xu Zhen-Yuan. Impulsive synchronization and control of directed transport in chaotic ratchets[J]. Chin. Phys. B, 2010, 19(2): 20512 -020512 .
[8] Yan Hui, Yang Guo-Qing, Shi Tao, Wang Jin, Zhan Ming-Sheng. Production and guidance of pulsed atomic beams on chip[J]. Chin. Phys. B, 2010, 19(2): 23204 -023204 .
[9] Shen Xiao-Zhi, Yuan Ping, Liu Juan. Electric-dipole allowed (E1) and forbidden (E2, M1 and M2)transition probabilities of 4f for N+[J]. Chin. Phys. B, 2010, 19(5): 53101 -053101 .
[10] Luo Mu-Hua, Zhang Qiu-Ju. Generation of a single attosecond pulse from an overdense plasma surface driven by a laser pulse with time-dependent polarization[J]. Chin. Phys. B, 2011, 20(8): 85201 -085201 .