Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128401    DOI: 10.1088/1674-1056/abc2b8
RAPID COMMUNICATION Prev   Next  

Compact NbN resonators with high kinetic inductance

Xing-Yu Wei(魏兴雨)1,2, Jia-Zheng Pan(潘佳政)1,2, Ya-Peng Lu(卢亚鹏)1,2, Jun-Liang Jiang(江俊良)1,2, Zi-Shuo Li(李子硕)1,2, Sheng Lu(卢盛)1,2, Xue-Cou Tu(涂学凑)1,2, Qing-Yuan Zhao(赵清源)1,2, Xiao-Qing Jia(贾小氢)1,2, Lin Kang(康琳)1,2, Jian Chen(陈健)1,2, Chun-Hai Cao(曹春海)1, Hua-Bing Wang(王华兵)1,2, Wei-Wei Xu(许伟伟)1, Guo-Zhu Sun(孙国柱)1,2,†, and Pei-Heng Wu(吴培亨)1,2
1 Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China; 2 Purple Mountain Laboratories, Nanjing 211111, China
Abstract  We design and fabricate Λ/2 coplanar waveguide NbN resonators, the thickness and length of which are only several nanometers and hundred microns, respectively. The quality factor of such compact resonators can reach up to 7.5×104 at single photon power level at 30 mK with the resonance frequency around 6.835 GHz. In order to tune the resonant frequency, the resonator is terminated to the ground with a dc-SQUID. By tuning the magnetic flux in the dc-SQUID, the effective inductance of the dc-SQUID is varied, which leads to the change in the resonant frequency of the resonator. The tunability range is more than 30 MHz and the quality factor is about 3×103. These compact and tunable NbN resonators have potential applications in the quantum information processing, such as in the precision measurement, coupling and/or reading out the quantum states of qubits.
Keywords:  superconducting resonator      NbN      kinetic inductance      tunable resonator  
Received:  24 August 2020      Revised:  02 October 2020      Published:  19 November 2020
PACS:  84.40.Dc (Microwave circuits)  
  85.25.Dq (Superconducting quantum interference devices (SQUIDs))  
Fund: Project partially supported by the National Key R&D Program of China (Grant No. 2016YFA0301801), the National Natural Science Foundation of China (Grant Nos. 11474154 and 61521001), PAPD, Dengfeng Project B of Nanjing University, and the Fundamental Research Funds for the Central Universities, China (Grant No. 14380134).
Corresponding Authors:  Corresponding author. E-mail: gzsun@nju.edu.cn   

Cite this article: 

Xing-Yu Wei(魏兴雨), Jia-Zheng Pan(潘佳政), Ya-Peng Lu(卢亚鹏), Jun-Liang Jiang(江俊良), Zi-Shuo Li(李子硕), Sheng Lu(卢盛), Xue-Cou Tu(涂学凑), Qing-Yuan Zhao(赵清源), Xiao-Qing Jia(贾小氢), Lin Kang(康琳), Jian Chen(陈健), Chun-Hai Cao(曹春海), Hua-Bing Wang(王华兵), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨) Compact NbN resonators with high kinetic inductance 2020 Chin. Phys. B 29 128401

[1] Nakamura Y, Pashkin Y A and Tsai J S Nature 398 786 DOI: 10.1038/197181999
[2] Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, Esteve D and Devoret M H Science 296 886 DOI: 10.1126/science.10693722002
[3] Martinis J M, Nam S, Aumentado J and Urbina C Phys. Rev. Lett. 89 117901 DOI: 10.1103/PhysRevLett.89.1179012002
[4] Chiorescu I, Nakamura Y, Harmans C J P M and J E Mooij Science 299 1869 DOI: 10.1126/science.10810452003
[5] Arute F, Arya K, Babbush R, et al Nature 574 505 DOI: 10.1038/s41586-019-1666-52019
[6] Wallraff A, Schuster D I, Blais A,Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J Nature 431 162 DOI: 10.1038/nature028512004
[7] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J Phys. Rev. A 69 062320 DOI: 10.1103/PhysRevA.69.0623202004
[8] Ashhab S, You J Q and Nori F Phys. Rev. A 79 032317 DOI: 10.1103/PhysRevA.79.0323172009
[9] Siddiqi I, Vijay R, Metcalfe M, Boaknin E and Devoret M H Phys. Rev. B 73 054510 DOI: 10.1103/PhysRevB.73.0545102005
[10] Leduc H G, Bumble B, Day P K, Eom B H, Gao J, Golwala S, Mazin B A, McHugh S, Merrill A, Moore D C, Noroozian O, Turner A D and Zmuidzinas J Appl. Phys. Lett. 97 102509 DOI: 10.1063/1.34804202010
[11] Goltsman G N, Okunev O, Chulkova G, Lipatov A, Semenov A, Smirnov K, Voronov B, Dzardanov A, Williams C and Sobolewski R Appl. Phys. Lett. 79 705 DOI: 10.1063/1.13888682001
[12] Sobolewski R, Verevkin A, Gol'tsman G N, Lipatov A and Wilsher K IEEE Trans. Appl. Supercond. 13 1151 DOI: 10.1109/TASC.2003.8141782003
[13] Niepce D, Burnett J and Bylander J Phys. Rev. A 11 044014 DOI: 10.1103/PhysRevApplied.11.0440142019
[14] Watanabe K, Yoshida K, Aoki T and Kohjiro S Jpn. J. Appl. Phys. 33 5708 DOI: 10.1143/JJAP.33.57081994
[15] Tinkham M Physics Today 49 74 DOI: 10.1063/1.28078111996
[16] Mondal M, Kamlapure A, Chand M, Saraswat G, Kumar S, Jesudasan J, Benfatto L, Tripathi V and Raychaudhuri P Phys. Rev. Lett. 106 047001 DOI: 10.1103/PhysRevLett.106.0470012011
[17] Pozar D M1993 Microwave Engineering (Addison Wesley Publishing Company)
[18] Goppl M, Fragner A, Baur M, Bianchetti R, Filip P S, Fink J M, Leek P J, Puebla G, Steffen L andWallraf A J. Appl. Phys. 104 113904 DOI: 10.1063/1.30108592008
[19] Oconnell A D, Ansmann M, Bialczak R C, Hofheinz M, Katz N, Lucero E, Mckenney C, Neeley M, Wang H, Weig E M, Cleland A N and Martinis J M Appl. Phys. Lett. 92 112903 DOI: 10.1063/1.28988872008
[20] Pan J, Jooya H Z, Sun G, Fan Y, Wu P, Telnov D A, Chu S and Han S Phys. Rev. B 96 174518 DOI: 10.1103/PhysRevB.96.1745182017
[21] Gao J, Daal M, Anastasios V, Shwetank K, Jonas Z, Bernard S, Benjamin A M, Peter K D and Henry G L Appl. Phys. Lett. 92 152505 DOI: 10.1063/1.29063732008
[22] Mattis D C and Bardeen J Phys. Rev. 111 412 DOI: 10.1103/PhysRev.111.4121958
[23] Gao J2008 The Physics of Superconducting Microwave Resonators (Ph.D. Thesis) (California: California Institute of Technology Pasadena)
[24] Swenson L J, Day P K, Eom B H, Leduc H J, Llombart N, Mckenney C M, Noroozian O and Zmuidzinas J J. Appl. Phys. 113 104501 DOI: 10.1063/1.47948082013
[25] Burnett J, Sagar J, Kennedy O W, Warburton P A and Fenton J C Phys. Rev. Appl. 8 014039 DOI: 10.1103/PhysRevApplied.8.0140392017
[26] Palacios-Laloy A, Nguyen F, Mallet F, Bertet P, Vion D and Esteve D Journal of Low Temperature Physics 151 1034 DOI: 10.1007/s10909-008-9774-x2008
[27] Ambegaokar V and Baratoff A Phys. Rev. Lett. 11 104 DOI: 10.1103/PhysRevLett.11.1041963
[28] Sandberg M, Wilson C M, Persson F, Bauch T, Johansson G, Shumeiko V, Duty T and Delsing P Appl. Phys. Lett. 92 203501 DOI: 10.1063/1.29293672008
[29] Simmonds R W, Lang K M, Hite D A, Nam S, Pappas D P and Martinis J M Phys. Rev. Lett. 93 077003 DOI: 10.1103/PhysRevLett.93.0770032004
[30] Sun G, Wen X, Mao B, Zhou Z, Yu Y, Wu P and Han S Phys. Rev. B 82 132501 DOI: 10.1103/PhysRevB.82.1325012010
[31] Sun G, Wen X, Mao B, Chen J, Yu Y, Wu P and Han S Nat. Commun. 1 51 DOI: 10.1038/ncomms10502010
[1] Investigation of dimensionality in superconducting NbN thin film samples with different thicknesses and NbTiN meander nanowire samples by measuring the upper critical field
Mudassar Nazir, Xiaoyan Yang(杨晓燕), Huanfang Tian(田焕芳), Pengtao Song(宋鹏涛), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Xueyi Guo(郭学仪), Yirong Jin(金贻荣), Lixing You(尤立星), Dongning Zheng(郑东宁). Chin. Phys. B, 2020, 29(8): 087401.
[2] High-performance midwavelength infrared detectors based on InAsSb nBn design
Xuan Zhang(张璇), Qing-Xuan Jia(贾庆轩), Ju Sun(孙矩), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2020, 29(6): 068501.
[3] Fabrication of superconducting NbN meander nanowires by nano-imprint lithography
Mei Yang(杨美), Li-Hua Liu(刘丽华), Lu-Hui Ning(宁鲁慧), Yi-Rong Jin(金贻荣), Hui Deng(邓辉), Jie Li(李洁), Yang Li(李阳), Dong-Ning Zheng(郑东宁). Chin. Phys. B, 2016, 25(1): 017401.
[4] Statistical analysis of the temporal single-photon response of superconducting nanowire single photon detection
He Yu-Hao, Lü Chao-Lin, Zhang Wei-Jun, Zhang Lu, Wu Jun-Jie, Chen Si-Jing, You Li-Xing, Wang Zhen. Chin. Phys. B, 2015, 24(6): 060303.
[5] First-principles calculations on the elastic and thermodynamic properties of NbN
Ren Da-Hua, Cheng Xin-Lu. Chin. Phys. B, 2012, 21(12): 127103.
No Suggested Reading articles found!