Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 095201    DOI: 10.1088/1674-1056/aba2e4
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Gaussian process tomography based on Bayesian data analysis for soft x-ray and AXUV diagnostics on EAST

Yan Chao(晁燕)1,2, Liqing Xu(徐立清)1, Liqun Hu(胡立群)1, Yanmin Duan(段艳敏)1, Tianbo Wang(王天博)3, Yi Yuan(原毅)1,2, Yongkuan Zhang(张永宽)1,2
1 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 Southwestern Institute for Physics, CNNC, Chengdu 610200, China
Abstract  This work presents the Gaussian process tomography (GPT) based on Bayesian data analysis and its applications in soft x-ray (SXR) and absolute extreme ultraviolet spectroscopy (AXUV) diagnostics on experimental advanced superconducting tokamak (EAST). This is the first application of the GPT method in the AXUV diagnostic system in fusion devices. It is found that even if only horizontal detector arrays are used to reconstruct the two-dimensional (2D) distribution of SXR and AXUV emissivity fields, the GPT method performs robustly and extremely fast, which enables the GPT method to provide real-time feedback on impurity transport and fast magnetohydrodynamics (MHD) events. By reconstructing SXR emissivity in the poloidal cross section on EAST, an m/n=1/1 internal kink mode has been observed, and the plasma redistribution due to the kink mode is clearly visible in the reconstructions, where m is the poloidal mode number and n is the toroidal mode number. Sawtooth-like internal disruptions extended throughout the entire plasma core and mainly driven by the m/n=2/1 mode have been acquired. During the sawtooth-like internal disruption crash phase, the conversion from an m=2 mode to an m=1 mode is observed. Using the reconstructed AXUV emissivity field we were able to observe the process of impurity accumulated in the plasma core and the mitigation of core impurity due to neon injection in the plasma edge. The data from all other diagnostics involved in the analysis shows that the reconstructions from AXUV measurements are reliable.
Keywords:  bayesian inference      Gaussian process      tomography      plasma physics  
Received:  30 May 2020      Revised:  02 July 2020      Published:  05 September 2020
PACS:  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
  52.25.Vy (Impurities in plasmas)  
  52.35.Py (Macroinstabilities (hydromagnetic, e.g., kink, fire-hose, mirror, ballooning, tearing, trapped-particle, flute, Rayleigh-Taylor, etc.))  
Fund: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 11505226) and the National Natural Science Foundation of China (Grant No. 11975273).
Corresponding Authors:  Liqing Xu, Liqun Hu     E-mail:  lqxu@ipp.ac.cn;lqhu@ipp.ac.cn

Cite this article: 

Yan Chao(晁燕), Liqing Xu(徐立清), Liqun Hu(胡立群), Yanmin Duan(段艳敏), Tianbo Wang(王天博), Yi Yuan(原毅), Yongkuan Zhang(张永宽) Gaussian process tomography based on Bayesian data analysis for soft x-ray and AXUV diagnostics on EAST 2020 Chin. Phys. B 29 095201

[1] Chen K Y, Xu L Q, Hu L Q, Duan Y M, Li X Q, Yuan Y, Mao S T, Sheng X L and Zhao J L 2016 Rev. Sci. Instrum. 87 063504
[2] Duan Y M, Hu L Q, Mao S T, Chen K Y, Lin S Y and EAST Diagnostics Team 2012 Rev. Sci. Instrum. 83 093501
[3] Duan Y M, Mao S T, Hu L Q, Xu P, Xu L Q, Zhang J Z and Lin S Y 2016 Rev. Sci. Instrum. 87 11D434
[4] Ingesson L C, Alper B, Peterson B J and Vallet J C 2008 Fusion Sci. Technol. 53 528
[5] Cormack A M 1964 J. Appl. Phys. 35 2908
[6] Ertl K, VonderLinden W, Dose V and Weller A 1996 Nucl. Fusion 36 1477
[7] Anton M, Weisen H, Dutch M, Von der Linden W, Buhlmann F, Chavan R, Marletaz B, Marmillod P and Paris P 1996 Plasma Physics Controlled Fusion 38 1849
[8] Li D, Dong Y B, Deng W, Shi Z B, Fu B Z, Gao J M, Wang T B, Zhou Y, Liu Y, Yang Q W and Duan X R 2016 Rev. Sci. Instrum. 87 11E319
[9] Wang T, Mazon D, Svensson J, Li D, Jardin A and Verdoolaege G 2018 Rev. Sci. Instrum. 89 10F103
[10] Igochine V 2015 Active Control of Magneto-hydrodynamic Instabilities in Hot Plasmas, Vol. 83 (Berlin: Springer) p. 68
[11] Gelman A, Carlin J B, Stern H S, Dunson D B, Vehtari A and Rubin D B 2013 Bayesian data analysis, 3rd edn. (Boca Raton: Chapman and Hall/CRC) pp. 63-79
[12] Chalupka K, Williams C and Murray I 2013 J. Mach. Learn. Res. 14 333
[13] Li D, Svensson J, Thomsen H, Medina F, Werner A and Wolf R 2013 Rev. Sci. Instrum. 84 083506
[14] Williams C and Agakov F 2002 Neural Computation 14 1169
[15] Dewit T D, Pecquet A L, Vallet J C and Lima R 1994 Phys. Plasmas 1 3288
[16] Alladio F, Bardotti G, Bartiromo R ηl 1986 Nucl. Fusion 26 11
[17] Carreras B, Waddell B V, Hicks H R and Lynch S J 1978 Phys. Rev. A 18 2732
[18] Xu L Q, Duan Y M, Chen K Y, Zhao H L, Luo Z P, Zheng Z, Liu Y, Liu H Q, Chen Y J, Yi Y, Hu L Q, Du H F and Shi T H 2017 Nucl. Fusion 57 126002
[19] Zhang L, Morita S, Xu Z, et al. 2015 Rev. Sci. Instrum. 86 123509
[20] Han X, Hu A, Li D, Xiao S, Tian B, Zang Q, Zhao J, Hsieh C, Gong X, Hu L, Xu G and Team E A S T 2018 IEEE Trans. Plasma Sci. 46 406
[1] High-resolution bone microstructure imaging based on ultrasonic frequency-domain full-waveform inversion
Yifang Li(李义方), Qinzhen Shi(石勤振), Ying Li(李颖), Xiaojun Song(宋小军), Chengcheng Liu(刘成成), Dean Ta(他得安), and Weiqi Wang(王威琪). Chin. Phys. B, 2021, 30(1): 014302.
[2] Magnetoacoustic position imaging for liquid metal in animal interstitial structure
Xiao-He Zhao(赵筱赫), Guo-Qiang Liu(刘国强), Hui Xia(夏慧), Yan-Hong Li(李艳红). Chin. Phys. B, 2020, 29(5): 054305.
[3] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[4] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[5] Performance improvement of magneto-acousto-electrical tomography for biological tissues with sinusoid-Barker coded excitation
Zheng-Feng Yu(余正风), Yan Zhou(周), Yu-Zhi Li(李禹志), Qing-Yu Ma(马青玉), Ge-Pu Guo(郭各朴), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2018, 27(9): 094302.
[6] Observation of geometric phase in a dispersively coupled resonator-qutrit system
Libo Zhang(张礼博), Chao Song(宋超), H Wang(王浩华), Shi-Biao Zheng(郑仕标). Chin. Phys. B, 2018, 27(7): 070303.
[7] Bio-macromolecular dynamic structures and functions, illustrated with DNA, antibody, and lipoprotein
Lu Gou(缑璐), Taoli Jin(金桃丽), Shuyu Chen(陈淑玉), Na Li(李娜), Dongxiao Hao(郝东晓), Shengli Zhang(张胜利), Lei Zhang(张磊). Chin. Phys. B, 2018, 27(2): 028708.
[8] Simulation research on effect of magnetic nanoparticles on physical process of magneto-acoustic tomography with magnetic induction
Xiao-Heng Yan(闫孝姮), Ying Zhang(张莹), Guo-Qiang Liu(刘国强). Chin. Phys. B, 2018, 27(10): 104302.
[9] Two-qubit pure state tomography by five product orthonormal bases
Yu Wang(王宇), Yun Shang(尚云). Chin. Phys. B, 2018, 27(10): 100306.
[10] X-ray tomography study on the structure of the granular random loose packing
Yi Xing(邢义), Yu-Peng Qiu(邱宇鹏), Zhi Wang(王智), Jia-Chao Ye(叶佳超), Xiang-Ting Li(李向亭). Chin. Phys. B, 2017, 26(8): 084503.
[11] Boundary normal pressure-based electrical conductivity reconstruction for magneto-acoustic tomography with magnetic induction
Ge-Pu Guo(郭各朴), He-Ping Ding(丁鹤平), Si-Jie Dai(戴思捷), Qing-Yu Ma(马青玉). Chin. Phys. B, 2017, 26(8): 084301.
[12] Adaptive optimization on ultrasonic transmission tomography-based temperature image for biomedical treatment
Yun-Hao Zhu(朱昀浩), Jie Yuan(袁杰), Stephen Z Pinter, Oliver D Kripfgans, Qian Cheng(程茜), Xue-Ding Wang(王学鼎), Chao Tao(陶超), Xiao-Jun Liu(刘晓峻), Guan Xu(徐冠), Paul L Carson. Chin. Phys. B, 2017, 26(6): 064301.
[13] Lorentz force electrical impedance tomography using pulse compression technique
Zhi-shen Sun(孙直申), Guo-qiang Liu(刘国强), Hui Xia(夏慧). Chin. Phys. B, 2017, 26(12): 124302.
[14] Single-shot grating-based x-ray differential phase contrast imaging with a modified analyzer grating
Chen-Xi Wei(卫晨希), Zhao Wu(吴朝), Faiz Wali, Wen-Bin Wei(魏文彬), Yuan Bao(鲍园), Rong-Hui Luo(骆荣辉), Lei Wang(王磊), Gang Liu(刘刚), Yang-Chao Tian(田扬超). Chin. Phys. B, 2017, 26(10): 108701.
[15] Optimization-based image reconstruction in x-ray computed tomography by sparsity exploitation of local continuity and nonlocal spatial self-similarity
Han-Ming Zhang(张瀚铭), Lin-Yuan Wang(王林元), Lei Li(李磊), Bin Yan(闫镔), Ai-Long Cai(蔡爱龙), Guo-En Hu(胡国恩). Chin. Phys. B, 2016, 25(7): 078701.
No Suggested Reading articles found!