Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 100201    DOI: 10.1088/1674-1056/ab9f22
General   Next  

On superintegrable systems with a position-dependent mass in polar-like coordinates

Hai Zhang(章海)†
1 School of Mathematics and Physics, Anqing Normal University, Anqing 246133, China
Abstract  

For a superintegrable system defined in plane polar-like coordinates introduced by Szumiński et al. and studied by Fordy, we show that the system with a position-dependent mass is separable in three distinct coordinate systems. The corresponding separation equations and additional integrals of motion are derived explicitly. The closure algebra of integrals is deduced. We also make a generalization of this system by employing the classical Jacobi method. Lastly a sufficient condition which ensures flatness of the underlying space is derived via explicit calculation.

Keywords:  superintegrable system      separation of variables      position-dependent mass      polar-like coordinates      Jacobi method  
Received:  27 March 2020      Revised:  03 June 2020      Accepted manuscript online:  23 June 2020
PACS:  02.30.Ik (Integrable systems)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  02.40.Ky (Riemannian geometries)  
Corresponding Authors:  Corresponding author. E-mail: haizhang@mail.ustc.edu.cn   
About author: 
†Corresponding author. E-mail: haizhang@mail.ustc.edu.cn
* Project supported in part by the National Natural Science Foundation of China (Grant No. 11701009), the Natural Science Research Project of Universities in Anhui, China (Grant No. KJ2017A363), and the Natural Science Fund of Anhui Province, China (Grant Nos. 1908085MA01 and 1908085MA22).

Cite this article: 

Hai Zhang(章海)† On superintegrable systems with a position-dependent mass in polar-like coordinates 2020 Chin. Phys. B 29 100201

[1]
Szumiński W, Maciejewski A J, Przybylska M 2015 Phys. Lett. A 379 2970 DOI: 10.1016/j.physleta.2015.08.032
[2]
Maciejewski A J, Szumiński W, Przybylska M 2017 Phys. Lett. A 381 725 DOI: 10.1016/j.physleta.2016.12.030
[3]
Szumiński W 2019 Commun. Nonlin. Sci. Numer. Simulat. 67 600 DOI: 10.1016/j.cnsns.2018.06.030
[4]
Fordy A P 2017 J. Geom. Phys. 115 98 DOI: 10.1016/j.geomphys.2016.06.005
[5]
Perelomov A M 1990 Integrable System of Classical Mechanics and Lie Algebras Basel Birkhäuser
[6]
Cariñena J F, Herranz F J, Rañada M F 2017 J. Math. Phys. 58 022701 DOI: 10.1063/1.4975339
[7]
Vakarchuk I O 2005 J. Phys. A: Math. Gen. 38 4727 DOI: 10.1088/0305-4470/38/21/016
[8]
Ballesteros A, Enciso A, Herranz F J, Ragnisco O, Riglioni D 2011 J. Phys.: Conf. Ser. 284 012011 DOI: 10.1088/1742-6596/284/1/012011
[9]
Ballesteros A, Gutiérrez-Sagredo I, Naranjo P 2017 Phys. Lett. A 381 701 DOI: 10.1016/j.physleta.2016.12.040
[10]
Mustafa O 2015 J. Phys. A: Math. Theor. 48 225206 DOI: 10.1088/1751-8113/48/22/225206
[11]
Cruz y, Cruz S, Negro J, Nieto L M 2007 Phys. Lett. A 369 400 DOI: 10.1016/j.physleta.2007.05.040
[12]
Jacobi C G J 1866 Vorlesungen über Dynamik—Jacobi’s Lectures on Dynamics Given in Königsberg Berlin Georg Reimer 1842 1843
[13]
Vershilov A V, Tsiganov A V 2009 J. Phys. A: Math. Theor. 42 105203 DOI: 10.1088/1751-8113/42/10/105203
[14]
Tsiganov A V 2004 Theor. Math. Phys. 139 636 DOI: 10.1023/B:TAMP.0000026181.79622.af
[15]
Kalnins E G, Kress J M, Miller W 2005 J. Nonlin. Math. Phys. 12 209 DOI: 10.2991/jnmp.2005.12.2.5
[16]
Zhang H, Hao Q Y 2019 Appl. Math. Comput. 350 305 DOI: 10.1016/j.amc.2019.01.022
[17]
Pressley A N 2010 Elementary Differential Geometry 2 London Springer-Verlag
[18]
Bravo R, Plyushchay M S 2016 Phys. Rev. D 93 105023 DOI: 10.1103/PhysRevD.93.105023
[19]
Plyushchay M S 2017 Ann. Phys. 377 164 DOI: 10.1016/j.aop.2016.12.003
[20]
Liu S J, Tang X Y, Lou S Y 2018 Chin. Phys. B 27 060201 DOI: 10.1088/1674-1056/27/6/060201
[21]
Song J, Zhang Y 2017 Chin. Phys. B 26 084501 DOI: 10.1088/1674-1056/26/8/084501
[1] Quasi-canonicalization for linear homogeneous nonholonomic systems
Yong Wang(王勇), Jin-Chao Cui(崔金超), Ju Chen(陈菊), Yong-Xin Guo(郭永新). Chin. Phys. B, 2020, 29(6): 064501.
[2] Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
M Eshghi, R Sever, S M Ikhdair. Chin. Phys. B, 2018, 27(2): 020301.
[3] Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields
M Eshghi, H Mehraban, S M Ikhdair. Chin. Phys. B, 2017, 26(6): 060302.
[4] The bound state solution for the Morse potential with a localized mass profile
S Miraboutalebi. Chin. Phys. B, 2016, 25(10): 100301.
[5] Hawking radiation of stationary and non-stationary Kerr–de Sitter black holes
T. Ibungochouba Singh. Chin. Phys. B, 2015, 24(7): 070401.
[6] Shannon information entropies for position-dependent mass Schrödinger problem with a hyperbolic well
Sun Guo-Hua, Dušan Popov, Oscar Camacho-Nieto, Dong Shi-Hai. Chin. Phys. B, 2015, 24(10): 100303.
[7] Deformed oscillator algebra for quantum superintegrable systems in two-dimensional Euclidean space and on the complex two-sphere
H. Panahi, Z. Alizadeh. Chin. Phys. B, 2013, 22(6): 060304.
[8] Bound states of the Dirac equation with position-dependent mass for the Eckart potential
Bahar M. K., Yasuk F.. Chin. Phys. B, 2013, 22(1): 010301.
[9] Nonlinear dynamical symmetries of Smorodinsky–Winternitz and and Fokas–Lagerstorm systems
Li You-Ning(李佑宁) and Huang Hua-Jun(黄华俊). Chin. Phys. B, 2011, 20(1): 010302.
[10] A new eight-dimensional Lie superalgebra and two corresponding hierarchies of evolution equations
Wang Xin-Zeng(王新赠) and Dong Huan-He(董焕河) . Chin. Phys. B, 2010, 19(1): 010202.
[11] Hamilton--Jacobi method for solving ordinary differential equations
Mei Feng-Xiang(梅凤翔), Wu Hui-Bin(吴惠彬), and Zhang Yong-Fa(张永发). Chin. Phys. B, 2006, 15(8): 1662-1664.
[12] Mapping of the position-dependent mass Schrödinger equation under point canonical transformation
Chen Gang (陈刚). Chin. Phys. B, 2005, 14(3): 460-462.
No Suggested Reading articles found!