Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084103    DOI: 10.1088/1674-1056/ab943d
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel

Yong-Nan Hu(胡永南)1, Li-Hong Cheng(成丽红)2, Zheng-Wei Yao(姚征伟)1, Xiao-Bo Zhang(张小波)1, Ai-Xia Zhang(张爱霞)1, Ju-Kui Xue(薛具奎)1
1 College of Physics and Electronics Engineering, Northwest Normal University, Lanzhou 730070, China;
2 School of Science, Guizhou University of Engineering Science, Bijie 551700, China
Abstract  We study the dynamics of single electron in an inhomogeneous cylindrical plasma channel during the direct acceleration by linearly polarized chirped laser pulse. By adjusting the parameters of the chirped laser pulse and the plasma channel, we obtain the energy gain, trajectory, dephasing rate and unstable threshold of electron oscillation in the channel. The influences of the chirped factor and inhomogeneous plasma density distribution on the electron dynamics are discussed in depth. We find that the nonlinearly chirped laser pulse and the inhomogeneous plasma channel have strong coupled influence on the electron dynamics. The electron energy gain can be enhanced, the instability threshold of the electron oscillation can be lowered, and the acceleration length can be shortened by chirped laser, while the inhomogeneity of the plasma channel can reduce the amplitude of the chirped laser.
Keywords:  chirped laser pulse      plasma channel      laser-plasma interaction      electron acceleration  
Received:  04 December 2019      Revised:  15 May 2020      Accepted manuscript online: 
PACS:  41.75.Jv (Laser-driven acceleration?)  
  52.38.Kd (Laser-plasma acceleration of electrons and ions)  
  52.27.Ny (Relativistic plasmas)  
  52.38.Hb (Self-focussing, channeling, and filamentation in plasmas)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11865014, 11765017, 11764039, 11475027, 11274255, and 11305132), the Natural Science Foundation of Gansu Province of China (Grant No. 17JR5RA076), the Scientific Research Project of Gansu Higher Education of China (Grant No. 2016A-005), the Natural Science Foundation of Education Department of Guizhou Province of China (Grant No. Qianjiaohe-KY-[2017]301), and the Science and Technology Project of Guizhou Province of China (Grant No. Qiankehe-LH-[2017]7008).
Corresponding Authors:  Ju-Kui Xue     E-mail:  xuejk@nwnu.edu.cn

Cite this article: 

Yong-Nan Hu(胡永南), Li-Hong Cheng(成丽红), Zheng-Wei Yao(姚征伟), Xiao-Bo Zhang(张小波), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎) Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel 2020 Chin. Phys. B 29 084103

[1] Sprangle P, Esarey E and Ting A 1990 Phys. Rev. Lett. 64 2011
[2] Max C E, Arons J and Langdon A B 1974 Phys. Rev. Lett. 33 209
[3] Bobin J L, Decroisette M, Meyer B and Vitel Y 1973 Phys. Rev. Lett. 30 594
[4] Weng S M, Murakami M, Azechi H, Wang J W, Tasoko N, Chen M, Sheng Z M, Mulser P, Yu W and Shen B F 2014 Phys. Plasmas 21 012705
[5] Esarey E, Ting A and Sprangle P 1990 Phys. Rev. A 42 3526
[6] Faure J, Glinec Y, Santos J J, Ewald F, Rousseau J P, Kiselev S, Pukhov A, Hosokai T and Malka V 2005 Phys. Rev. Lett. 95 205003
[7] Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod. Phys. 81 1229
[8] Zhang Z, Chen Y, Cui S, He F, Chen M, Zhang Z, Yu J, Chen L, Sheng Z and Zhang J 2018 Nat. Photon. 12 554
[9] Clayton C E, Joshi C, Darrow C and Umstadter D 1985 Phys. Rev. Lett. 54 2343
[10] Zhao Q, Weng S M, Chen M, Zeng M, Hidding B, Jaroszynski D A, Assmann R and Sheng Z M 2019 Plasma Phys. Control. Fusion 61 085015
[11] Clayton C E, Marsh K A, Dyson A, Everett M, Lal A, Leemans W P, Williams R and Joshi C 1993 Phys. Rev. Lett. 70 37
[12] Krall J, Ting A, Esarey E and Sprangle P 1993 Phys. Rev. E 48 2157
[13] Modena A, Najmudin Z, Dangor A E, Clayton C E, Marsh K A, Joshi C, Malka V, Darrow C B, Danson C, Neely D and Walsh F N 1995 Nature 377 606
[14] Umstadter D, Dodd E and Kim J K 1996 Phys. Rev. Lett. 76 2073
[15] Esarey E, Hubbard R F, Leemans W P, Ting A and Sprangle P 1997 Phys. Rev. Lett. 79 2682
[16] Moore C I, Ting A, Mchaught S J, Qiu J, Burris H R and Sprangle P 1999 Phys. Rev. Lett. 82 1688
[17] Wang X, Donowan M, Dyer G, Wang X M, Zgadzaj R, Fazel N, Li Z Y, Yi S A, Zhang X, Henderson W, Chang Y Y, Korzekwa R, Tsai H E, Pai C H, Quevedo H, Dyer G, Gaul E, Martinez M, Bernstein A C, Borger T, Spinks M, Donovan M, Khudik V, Shvets G, Ditmire T and Downer M C 2013 Nat. Commun. 4 1988
[18] Leemans W P, Gonsalves A J, Mao H, Nakamura K, Benedetti C, Schroeder C B, Tóth C, Daniels J, Mittelberger D E and Bulanov S S 2014 Phys. Rev. Lett. 113 245002
[19] Rassou S, Bourdier A and Drouin M 2015 Phys. Plasmas 22 073104
[20] Pukhov A and Meyerter J 2002 Appl. Phys. B 74 355
[21] Pollock B B, Tsung F S, Albert F, Shaw J L, Clayton C E, Davidson A, Lemos N, Marsh K A, Pak A and Ralph J E 2015 Phys. Rev. Lett. 115 055004
[22] Lu W, Tzoufras M, Joshi C, Tsung F S, Mori W B, Vieira J, Fonseca R A and Silva L O 2007 Phys. Rev. ST Accel. Beams 10 061301
[23] Amiranoff F, Bernard D, Cros B, Jacquet F, Matthieussent G, Miné P, Mora P, Morillo J, Moulin F and Specka A E 1995 Phys. Rev. Lett. 74 5220
[24] Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267
[25] Gahn C, Tsakiris G D, Pukhov A, Meyer-ter-Vehn J, Pretzler G, Thirolf P, Habs D and Witte K J 1999 Phys. Rev. Lett. 83 4772
[26] Dyakonov M I and Varshalovich D A 1971 Phys. Lett. 35 277
[27] Edighoffer J A, Kimura W D, Pantell R H, Piestrup M A and Wang D Y 1981 Phys. Rev. A 23 1848
[28] Koyama K, Hazama H, Saito N and Tanimoto M 2002 Int. J. Appl. Electromagn. Mech. 14 263
[29] Seres J, Seres E, Verhoef A J, Tempea G, Streli C, Wobrauschek P, Yakovlev V, Scrinzi A, Spielmann C and Krausz F 2005 Nature 433 596
[30] Tatarakis M, Watts I, Beg F N, Clark E L, Dangor A E, Gopal A, Haines M G, Norreys P A, Wagner U and Wei M 2002 Nature 415 280
[31] Weng S, Zhao Q, Sheng Z, Yu W, Luan S, Chen M, Yu L, Murakami M, Mori W B and Zhang J 2017 Optica 4 1086
[32] Zheng X, Weng S, Zhang Z, Ma H, Chen M, McKenna P and Sheng Z 2019 Opt. Express 27 19319
[33] Liu M, Weng S M, Wang H C, Chen M, Zhao Q, Sheng Z M, He M Q, Li Y T and Zhang J 2018 Phys. Plasmas 25 063103
[34] Malka G, Lefebvre E and Miquel J L 1997 Phys. Rev. Lett. 78 3314
[35] Wu X Y, Wang P X and Kawata S 2012 Appl. Phys. Lett 100 221109
[36] Gupta D N, Jang H J and Suk H 2009 J. Appl. Phys. 105 106110
[37] Hooker S M 2013 Nature Photon. 7 775
[38] Sohbatzadeh F, Mirzanejhad S and Ghasemi M 2006 Phys. Plasmas 13 123108
[39] Gupta D N and Suk H 2006 Phys. Plasmas 13 013105
[40] Arefiev A V, Khudik V N, Robinson A P L, Shvets G, Willingale L and Schollmeier M 2016 Phys. Plasmas 23 056704
[41] Arefiev A V, Breizman B N, Schollmeier M and Khudik V N 2012 Phys. Rev. Lett. 108 145004
[42] Arefiev A V, Khudik V N and Schollmeier M 2014 Phys. Plasmas 21 033104
[43] Raoa B S, Chakera J A, Naik P A, Kumar M and Gupta P D 2011 Phys. Plasmas 18 093104
[44] Zhang P, Hu Y, Li T, Cannan D, Yin X, Morandotti R, Chen Z G and Zhang X 2012 Phys. Rev. Lett. 109 193901
[45] Chelkowski S, Bandrauk A D, Corkum P B 1990 Phys. Rev. Lett. 65 2355
[46] Khachatryan A G, Van Goor F A and Boller K J 2004 Phys. Rev. E 70 067601
[47] Khachatryan A G, Van Goor F A, Verschuur J W and Boller K 2005 Phys. Plasmas 12 062116
[48] Pukhov A, Sheng Z M and Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847
[49] Sheng Z, Wu H, Li K and Zhang J 2004 Phys. Rev. E 69 025401
[50] Sheng Z, Mima K, Zhang J and Sanuki H 2005 Phys. Rev. Lett. 94 095003
[51] Layer B D, York A, Antonsen T M, Varma S, Chen Y, Leng Y and Milchberg H M 2007 Phys. Rev. Lett. 99 035001
[52] Robinson A P L, Arefiev A V and Khudik V N 2015 Plasma Phys. 22 083114
[53] Arefiev A V, Khudik V N, Robinson A P L, Shvets G and Willingale L 2016 Phys. Plasmas 23 023111
[54] Treacy E B 1968 Phys. Lett. A 28 34
[55] Dias J M, Stenz C, Lopes N, Badiche X, Blasco F, Dos Santos A, E Silva L O, Mysyrowicz A, Antonetti A and Mendon?a J T 1997 Phys. Rev. Lett. 78 4773
[56] Pathak N, Zhidkov A, Hosokai T and Kodama R 2018 Phys. Plasmas 25 013119
[57] Zeitouny A, Stepanov S, Levinson O and Horowitz M 2005 IEEE Photon. Technol. Lett. 17 660
[58] Rao B S, Moorti A, Naik P A and Gupta P D 2013 Phys. Rev. ST Accel. Beams 16 091301
[59] Ojarand J and Annus P 2010 Elektronika ir Elektrotechnika 4 73
[60] Nikodem M, Weidmann D and Wysocki G 2012 Appl. Phys. B 109 477
[61] Faure J, Marqués J R, Malka V, Amiranoff F, Najmudin Z, Walton B, Rousseau J P, Ranc S, Solodov A and Mora P 2001 Phys. Rev. E 63 065401
[62] Brabec T and Krausz F 2000 Rev. Mod. Phys. 72 545
[63] Gordon D F, Hafizi B, Hubbard R F, Pen?ano J R, Sprangle P and Ting A 2003 Phys. Rev. Lett. 90 215001
[64] Hajima R and Nagai R 2003 Phys. Rev. Lett. 91 024801
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[3] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[4] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[5] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[6] Nonlinear propagation of an intense Laguerre-Gaussian laser pulse in a plasma channel
Mingping Liu(刘明萍), Zhen Zhang(张震), and Suhui Deng(邓素辉). Chin. Phys. B, 2021, 30(5): 055204.
[7] Ultrabright γ-ray emission from the interaction of an intense laser pulse with a near-critical-density plasma
Aynisa Tursun(阿依妮萨·图尔荪), Mamat Ali Bake(买买提艾力·巴克), Baisong Xie(谢柏松), Yasheng Niyazi(亚生·尼亚孜), and Abuduresuli Abudurexiti(阿不都热苏力·阿不都热西提). Chin. Phys. B, 2021, 30(11): 115202.
[8] Electron self-injection and acceleration in a hollow plasma channel driven by ultrashort intense laser pulses
Suhui Deng(邓素辉), Mingping Liu(刘明萍). Chin. Phys. B, 2019, 28(4): 044101.
[9] Enhancement and modulation of terahertz radiation by multi-color laser pulses
Min-Jie Pei(裴敏洁), Chen-Hui Lu(卢晨晖), Xian-Wei Wang(王宪位), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(8): 084209.
[10] Properties of long light filaments in natural environment
Shi-You Chen(陈式有), Hao Teng(滕浩), Xin Lu(鲁欣), Zong-Wei Shen(沈忠伟), Shuang Qin(秦爽), Wen-Shou Wei(魏文寿), Rong-Yi Chen(陈荣毅), Li-Ming Chen(陈黎明), Yu-Tong Li(李玉同), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2018, 27(8): 085203.
[11] Laser-driven relativistic electron dynamics in a cylindrical plasma channel
Pan-Fei Geng(耿盼飞), Wen-Juan Lv(吕文娟), Xiao-Liang Li(李晓亮), Rong-An Tang(唐荣安), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2018, 27(3): 035201.
[12] Dense pair plasma generation and its modulation dynamics in counter-propagating laser field
Wei-Yuan Liu(刘维媛), Wen Luo(罗文), Tao Yuan(袁韬), Ji-Ye Yu(余继晔), Min Chen(陈民). Chin. Phys. B, 2018, 27(10): 105202.
[13] Pulse chirping effect on controlling the transverse cavity oscillations in nonlinear bubble regime
H Vosoughian, Z Riazi, H Afarideh, G Sarri. Chin. Phys. B, 2017, 26(2): 025201.
[14] Two-color laser wavelength effect on intense terahertz generation in air
Shufen Li(李淑芬), Chenhui Lu(卢晨晖), Chengshuai Yang(杨承帅), Yanzhong Yu(余燕忠), Zhenrong Sun(孙真荣), Shian Zhang(张诗按). Chin. Phys. B, 2017, 26(11): 114206.
[15] Enhanced laser-induced plasma channels in air
Yanlei Zuo(左言磊), Xiaofeng Wei(魏晓峰), Kainan Zhou(周凯南), Xiaoming Zeng(曾小明),Jingqin Su(粟敬钦), Zhihong Jiao(焦志宏), Na Xie(谢娜), Zhaohui Wu(吴朝辉). Chin. Phys. B, 2016, 25(3): 035203.
No Suggested Reading articles found!