Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057503    DOI: 10.1088/1674-1056/ab8200
RAPID COMMUNICATION Prev   Next  

Low temperature magnetism in the rare-earth perovskite GdScO3

Jie-Ming Sheng(盛洁明)1,2,3, Xu-Cai Kan(阚绪材)4, Han Ge(葛晗)1, Pei-Qian Yuan(袁培骞)1, Lei Zhang(张磊)1, Nan Zhao(赵南)1, Zong-Mei Song(宋宗美)1, Yuan-Yin Yao(姚远寅)1, Ji-Ning Tang(唐霁宁)1, Shan-Min Wang(王善民)1, Ming-Liang Tian(田明亮)4,5, Xin Tong(童欣)2,3, Liu-Suo Wu(吴留锁)1
1 Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China;
2 Institute of High Energy Physics, Chinese Academy of Sciences(CAS), Beijing 100049, China;
3 Spallation Neutron Source Science Center, Dongguan 523803, China;
4 School of Physics and Materials Science, Anhui University, Hefei 230601, China;
5 High Magnetic Field Laboratory, Chinese Academy of Science(CAS), Hefei 230031, China
Abstract  The magnetic phase diagram of rare-earth perovskite compound, GdScO3, has been investigated by magnetization and heat capacity. The system undergoes an antiferromagnetic phase transition at TN=2.6 K, with an easy axis of magnetization along the a axis. The magnetization measurements show that it exists a spin-flop transition around 0.3 T for the applied field along the a axis. The critical magnetic field for the antiferromagnetic-to-paramagnetic transition is near 3.2 T when temperature approaches zero. By scaling susceptibilities, we presume this point (B=3.2 T, T=0 K) might be a field-induced quantum critical point and the magnetic critical fluctuations can even be felt above TN.
Keywords:  rare-earth perovskite      magnetization      spin-flop transition      quantum critical point  
Received:  02 January 2020      Revised:  16 March 2020      Published:  05 May 2020
PACS:  75.47.Lx (Magnetic oxides)  
  75.50.Ee (Antiferromagnetics)  
  75.40.-s (Critical-point effects, specific heats, short-range order)  
  75.40.Cx (Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.))  
Fund: The work at SUSTech was supported by the National Natural Science Foundation of China (Grant No. 11974157). Part of this work was also supported by the National Natural Science Foundation of China (Grant No. 11875265), the Scientific Instrument Developing Project of the Chinese Academy of Sciences (3He-based neutron polarization devices), and the Institute of High Energy Physics, the Chinese Academy of Sciences. Kan X C and Tian M L were supported by the National Natural Science Foundation of China (Grant No. 51802002).
Corresponding Authors:  Xin Tong, Liu-Suo Wu     E-mail:  tongx@ihep.ac.cn;wuls@sustech.edu.cn

Cite this article: 

Jie-Ming Sheng(盛洁明), Xu-Cai Kan(阚绪材), Han Ge(葛晗), Pei-Qian Yuan(袁培骞), Lei Zhang(张磊), Nan Zhao(赵南), Zong-Mei Song(宋宗美), Yuan-Yin Yao(姚远寅), Ji-Ning Tang(唐霁宁), Shan-Min Wang(王善民), Ming-Liang Tian(田明亮), Xin Tong(童欣), Liu-Suo Wu(吴留锁) Low temperature magnetism in the rare-earth perovskite GdScO3 2020 Chin. Phys. B 29 057503

[1] Wu L S, Nikitin S E, Frontzek M, Kolesnikov A I, Ehlers G, Lumsden M D, Shaykhutdinov K A, Guo E J, Savici A T and Gai Z 2017 Phys. Rev. B 96 144407
[2] Wu Y D, Qin Y L, Ma X H, Li R W, Wei Y Y and Zi Z F 2019 J. Alloys Compd. 777 673
[3] Jia J H, Ke Y J, Zhang X X, Wang J F, Su L, Wu Y D and Xia Z C 2019 J. Alloys Compd. 803 992
[4] Schlom D G and Haeni J H 2002 MRS Bull. 27 198
[5] Lim S G, Kriventsov S, Jackson T N, Haeni J H, Schlom D G, Balbashov A M, Uecker R, Reiche P, Freeouf J L and Lucovsky G 2002 J. Appl. Phys. 91 4500
[6] Lucovsky G, Zhang Y, Whitten J L, Schlom D G and Freeouf J L 2004 Microelectronic Engineering 72 288
[7] Lucovsky G, Hong J G, Fulton C C, Zou Y, Nemanich R J, Ade H, Scholm D G and Freeouf J L 2004 Physica Status Solidi 241 2221
[8] Delugas P, Fiorentini V, Filippetti A and Pourtois G 2007 Phys. Rev. B 75 115126
[9] Christen H M, Jellison G E Jr, Ohkubo I, Huang S, Reeves M E, Cicerrella E, Freeouf J L, Jia Y and Schlom D G 2006 Appl. Phys. Lett. 88 262906
[10] Schlom D G, Chen L Q, Eom C B, Rabe K M, Streiffer S K and Triscone J M 2007 Ann. Rev. Mater. Res. 37 589
[11] Haeni J H, Irvin P, Chang W, Uecker R, Reiche P, Li Y L, Choudhury S, Tian W, Hawley M E, Craigo B, et al. 2004 Nature 430 758
[12] Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, et al. 2004 Science 306 1005
[13] Ke X, Adamo C, Schlom D G, Bernhagen M, Uecker R and Schiffer P 2009 Appl. Phys. Lett. 94 152503
[14] Plaza I, Palacios E, BartoloméJ, Rosenkranz S, Ritter C and Furrer A 1997 Physica B 234 635
[15] Raekers M, Kuepper K, Bartkowski S, Prinz M, Postnikov A V, Potzger K, Zhou S, Arulraj A, Stüßer N, Uecker R, et al. 2009 Phys. Rev. B 79 125114
[16] Wu L S, Nikitin S E, Wang Z, Zhu W, Batista C D, Tsvelik A M, Samarakoon A M, Tennant D A, Brando M, Vasylechko L, et al. 2019 Nat. Commun. 10 698
[17] Wu L S, Nikitin S E, Brando M, Vasylechko L, Ehlers G, Frontzek M, Savici A T, Sala G, Christianson A D, Lumsden M D, et al. 2019 Phys. Rev. B 99 195117
[18] Tokura Y, Seki S and Nagaosa N 2014 Rep. Prog. Phys. 77 076501
[19] Kimura T, Lawes G, Goto T, Tokura Y and Ramirez A P 2005 Phys. Rev. B 71 224425
[20] Schubert J, Trithaveesak O, Petraru A, Jia C L, Uecker R, Reiche P and Schlom D G 2003 Appl. Phys. Lett. 82 3460
[21] Liferovich R P and Mitchell R H 2004 J. Solid State Chem. 177 2188
[22] Blazey K W and Rohrer H 1968 Phys. Rev. 173 574
[23] Quezel S, Mignod J R and Tcheou F 1982 Solid State Commun. 42 103
[1] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[2] Perpendicular magnetization switching by large spin—orbit torques from sputtered Bi2Te3
Zhenyi Zheng(郑臻益), Yue Zhang(张悦), Daoqian Zhu(朱道乾), Kun Zhang(张昆), Xueqiang Feng(冯学强), Yu He(何宇), Lei Chen(陈磊), Zhizhong Zhang(张志仲), Dijun Liu(刘迪军), Youguang Zhang(张有光), Pedram Khalili Amiri, Weisheng Zhao(赵巍胜). Chin. Phys. B, 2020, 29(7): 078505.
[3] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[4] Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers
Ying-Yi Tian(田颖异), Shuan-Hu Wang(王拴虎), Gang Li(李刚), Hao Li(李豪), Shu-Qin Li(李书琴), Yang Zhao(赵阳), Xiao-Min Cui(崔晓敏), Jian-Yuan Wang(王建元), Lv-Kuan Zou(邹吕宽), and Ke-Xin Jin(金克新). Chin. Phys. B, 2020, 29(11): 117504.
[5] Magnetic characterization of a thin Co2MnSi/L10–MnGa synthetic antiferromagnetic bilayer prepared by MBE
Shan Li(黎姗), Jun Lu(鲁军)†, Si-Wei Mao(毛思玮), Da-Hai Wei(魏大海), and Jian-Hua Zhao(赵建华). Chin. Phys. B, 2020, 29(10): 107501.
[6] Influence of Tb on easy magnetization direction and magnetostriction of PrFe1.9 alloy
Chang-Xuan He(何昌璇), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), Cai-Yan Lu(陆彩燕), Ze-Ping Guo(郭泽平). Chin. Phys. B, 2019, 28(11): 117501.
[7] Magnetism manipulation in ferromagnetic/ferroelectric heterostructures by electric field induced strain
Xiaobin Guo(郭晓斌), Dong Li(李栋), Li Xi(席力). Chin. Phys. B, 2018, 27(9): 097506.
[8] Micromagnetism simulation on effects of soft phase size on Nd2Fe14B/α–Fe nanocomposite magnet with soft phase imbedded in hard phase
Yu-Qing Li(李玉卿), Ming Yue(岳明), Yi Peng(彭懿), Hong-Guo Zhang(张红国). Chin. Phys. B, 2018, 27(8): 087502.
[9] Magnetic properties of misch-metal partially substituted Nd-Fe-B magnets sintered by dual alloy method
Jie-Fu Xiong(熊杰夫), Rong-Xiang Shang(商荣翔), Yan-Li Liu(刘艳丽), Xin Zhao(赵鑫), Wen-Liang Zuo(左文亮), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), Tong-Yun Zhao(赵同云), Ren-Jie Chen(陈仁杰), Bao-Gen Shen(沈保根). Chin. Phys. B, 2018, 27(7): 077504.
[10] Sub-millikelvin station at Synergetic Extreme Condition User Facility
Zhi Gang Cheng(程智刚), Jie Fan(樊洁), Xiunian Jing(景秀年), Li Lu(吕力). Chin. Phys. B, 2018, 27(7): 070702.
[11] Current-induced synchronized magnetization reversal of two-body Stoner particles with dipolar interaction
Zhou-Zhou Sun(孙周洲), Yu Yang(杨玉), J Schliemann. Chin. Phys. B, 2018, 27(6): 067501.
[12] Interfacial effect on the reverse of magnetization and ultrafast demagnetization in Co/Ni bilayers with perpendicular magnetic anisotropy
Zi-Zhao Gong(弓子召), Wei Zhang(张伟), Wei He(何为), Xiang-Qun Zhang(张向群), Yong Liu(刘永), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(5): 057501.
[13] Investigation of magnetization reversal process in pinned CoFeB thin film by in-situ Lorentz TEM
Ke Pei(裴科), Wei-Xing Xia(夏卫星), Bao-Min Wang(王保敏), Xing-Cheng Wen(文兴成), Ping Sheng(盛萍), Jia-Ping Liu(刘家平), Xin-Cai Liu(刘新才), Run-Wei Li(李润伟). Chin. Phys. B, 2018, 27(4): 047502.
[14] First-order reversal curve investigated magnetization switching in Pd/Co/Pd wedge film
Yan Li(李岩), Wei He(何为), Rui Sun(孙瑞), Zi-Zhao Gong(弓子召), Na Li(李娜), Qeemat Gul, Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2018, 27(4): 047503.
[15] Mn-based permanent magnets
Jinbo Yang(杨金波), Wenyun Yang(杨文云), Zhuyin Shao(邵珠印), Dong Liang(梁栋), Hui Zhao(赵辉), Yuanhua Xia(夏元华), Yunbo Yang(杨云波). Chin. Phys. B, 2018, 27(11): 117503.
No Suggested Reading articles found!