Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057801    DOI: 10.1088/1674-1056/ab7e95
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of heating time on structural, morphology, optical, and photocatalytic properties of g-C3N4 nanosheets

Nguyen Manh Hung1,4, Le Thi Mai Oanh1,2, Lam Thi Hang1,3, Pham Do Chung2, Pham Thi Duyen1,5, Dao Viet Thang1,4, Nguyen Van Minh1,2
1 Center for Nano Science and Technology, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi, 100000, Vietnam;
2 Department of Physics, Hanoi National University of Education, 136 Xuan Thuy Road, Cau Giay District, Hanoi, 100000, Vietnam;
3 Faculty of Basic Sciences, Hanoi University of Natural Resources and Environment, 41 A Phu Dien Road, North Tu Liem, Hanoi, 100000, Vietnam;
4 Hanoi University of Mining and Geology, Duc Thang ward, North Tu Liem District, Hanoi, 100000, Vietnam;
5 Military science Academy, 322 Le Trong Tan street, Dinh Cong, Hoang Mai, Hanoi, 100000, Vietnam
Abstract  Effect of heating time on the structural, morphology, optical, and photocatalytic properties of graphitic carbon nitride (g-C3N4) nanosheets prepared at 550℃ in Ar atmosphere is studied. The investigations are carried out by using x-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), UV-vis absorption, and photoluminescence (PL). At a heating temperature of 550℃, g-C3N4 nanocrystals are formed after 0.5 h and become more orderly as the heating time increases. The surface area of the g-C3N4 nanosheets significantly increases as the preparation time increases. The g-C3N4 prepared in 2.5 h shows the highest photocatalytic performance, decomposing completely 10 ppm RhB solution under xenon lamp irradiation for 2.0 h.
Keywords:  nanosheets      photocatalytic      heating time      Ar atmosphere  
Received:  13 December 2019      Revised:  02 March 2020      Accepted manuscript online: 
PACS:  71.20.Nr (Semiconductor compounds)  
  71.20.Rv (Polymers and organic compounds)  
Fund: Project supported by the scientific and technological project at the level of Ministry of Education, Vietnam (Grant No. B2018-SPH-06-CTrVL).
Corresponding Authors:  Le Thi Mai Oanh     E-mail:  lemaioanh@gmail.com

Cite this article: 

Nguyen Manh Hung, Le Thi Mai Oanh, Lam Thi Hang, Pham Do Chung, Pham Thi Duyen, Dao Viet Thang, Nguyen Van Minh Effect of heating time on structural, morphology, optical, and photocatalytic properties of g-C3N4 nanosheets 2020 Chin. Phys. B 29 057801

[1] Gopal N O, Lo H H, Ke T F, et al. 2012 J. Phys. Chem. C 116 16191
[2] Kumar S, Karthikeyan S and Lee A 2018 Catalysts 8 74
[3] Bi Y, Ehsan M F, Huang Y, Jin J and He T 2015 J. CO2 Utilization 12 43
[4] Zhai X, Deng H, Zhou W, Yang P, Chu J and Zheng Z 2015 Mater. Lett. 161 423
[5] Bai X, Wang L and Zhu Y 2012 ACS Catal. 2 2769
[6] Ye S, Wang R, Wu M Z and Yuan Y P 2015 Appl. Surf. Sci. 358 15
[7] Wen J, Xie J, Chen X and Li X 2017 Appl. Surf. Sci. 391 72
[8] Zhang S, Hang N T, Zhang Z, Yue H and Yang W 2017 Nanomater. (Basel) 7 1
[9] Li R, Ren Y, Zhao P, Wang J, Liu J and Zhang Y 2019 J. Hazard Mater 365 606
[10] Wu M, Gong Y, Nie T, et al. 2019 J. Mater. Chem. A 7 5324
[11] Dong F, Zhao Z, Xiong T, et al. 2013 ACS Appl. Mater Interfaces 5 11392
[12] Xu J, Li Y, Peng S, Lu G and Li S 2013 Phys. Chem. Chem. Phys. 15 7657
[13] Zhang L, Jing D, She X, et al. 2014 J. Mater. Chem. A 2 2071
[14] Zhang Y, Pan Q, Chai G, et al. 2013 Sci. Rep. 3 1943
[15] Fan X, Xing Z, Shu Z, Zhang L, Wang L and Shi J 2015 RSC Adv. 5 8323
[16] Xu H Y, Wu L C, Zhao H, Jin L G and Qi S Y 2015 PLoS One 10 e0142616
[17] Xin G and Meng Y 2013 J. Chem. 2013 1
[18] Ming L, Yue H, Xu L and Chen F 2014 J. Mater. Chem. A 2 19145
[19] Yu X, Yang X and Li G 2018 J. Electron. Mater. 47 672
[20] Mai Oanh L T, Hang L T, Lai N D, et al. 2018 Phys. B: Condens. Matter 532 48
[21] Dai H, Gao X, Liu E, et al. 2013 Diamond Relat. Mater. 38 109
[22] Rehman Iu, Movasaghi Z, Rehman S 2012 Vibrational Spectroscopy for Tissue Analysis (Florida: CRC Press) p. 285
[23] Kesarla M K, Fuentez-Torres M O, Alcudia-Ramos M A, et al. 2019 J. Mater. Res. Technol. 8 1628
[24] Shen L, Xing Z, Zou J, et al. 2017 Sci. Rep. 7 41978
[25] Yuan Y, Zhang L, Xing J, et al. 2015 Nanoscale 7 12343
[1] Tuning the particle size, physical properties, and photocatalytic activity of Ag3PO4 materials by changing the Ag+/PO43- ratio
Hung N M, Oanh L T M, Chung D P, Thang D V, Mai V T, Hang L T, and Minh N V. Chin. Phys. B, 2023, 32(3): 038102.
[2] Blue phosphorene/MoSi2N4 van der Waals type-II heterostructure: Highly efficient bifunctional materials for photocatalytics and photovoltaics
Xiaohua Li(李晓华), Baoji Wang(王宝基), and Sanhuang Ke(柯三黄). Chin. Phys. B, 2023, 32(2): 027104.
[3] Interfacial defect engineering and photocatalysis properties of hBN/MX2 (M = Mo, W, and X = S, Se heterostructures
Zhi-Hai Sun(孙志海), Jia-Xi Liu(刘佳溪), Ying Zhang(张颖), Zi-Yuan Li(李子源), Le-Yu Peng(彭乐宇), Peng-Ru Huang(黄鹏儒), Yong-Jin Zou(邹勇进), Fen Xu(徐芬), and Li-Xian Sun(孙立贤). Chin. Phys. B, 2022, 31(6): 067101.
[4] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[5] C9N4 as excellent dual electrocatalyst: A first principles study
Wei Xu(许伟), WenWu Xu(许文武), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(9): 096802.
[6] Scalable preparation of water-soluble ink of few-layered WSe2 nanosheets for large-area electronics
Guoyu Xian(冼国裕), Jianshuo Zhang(张建烁), Li Liu(刘丽), Jun Zhou(周俊), Hongtao Liu(刘洪涛), Lihong Bao(鲍丽宏), Chengmin Shen(申承民), Yongfeng Li(李永峰), Zhihui Qin(秦志辉), Haitao Yang(杨海涛). Chin. Phys. B, 2020, 29(6): 066802.
[7] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[8] Synthesis of Pr-doped ZnO nanoparticles: Their structural, optical, and photocatalytic properties
Jun-Lian Chen(陈军联), Neena Devi, Na Li(李娜), De-Jun Fu(付德君), Xian-Wen Ke(柯贤文). Chin. Phys. B, 2018, 27(8): 086102.
[9] Synthesized few-layers hexagonal boron nitride nanosheets
Zhao-Jun Mo(莫兆军), Zhi-Hong Hao(郝志红), Xiao-Jie Ping(平晓杰), Li-Na Kong(孔丽娜), Hui Yang(杨慧), Jia-Lin Cheng(程佳林), Jun-Kai Zhang(张君凯), Yong-Hao Jin(金永昊), Lan Li(李岚). Chin. Phys. B, 2018, 27(1): 016102.
[10] Magnetic properties of AlN monolayer doped with group 1A or 2A nonmagnetic element: First-principles study
Ruilin Han(韩瑞林), Xiaoyang Chen(陈晓阳), Yu Yan(闫羽). Chin. Phys. B, 2017, 26(9): 097503.
[11] Two-dimensional polyaniline nanosheets via liquid-phase exfoliation
Su-Na Fan(范苏娜), Ren-Wei Liu(刘仁威), Rui-Song Ma(马瑞松), Shan-Sheng Yu(于陕升), Ming Li(李明), Wei-Tao Zheng(郑伟涛), Shu-Xin Hu(胡书新). Chin. Phys. B, 2017, 26(4): 048102.
[12] Electronic structures and magnetic properties of Zn- and Cd-doped AlN nanosheets: A first-principles study
Rui-Lin Han(韩瑞林), Shi-Min Jiang(姜世民), Yu Yan(闫羽). Chin. Phys. B, 2017, 26(2): 027502.
[13] Synthesis mechanism of heterovalent Sn2O3 nanosheets in oxidation annealing process
Zhao Jun-Hua (赵俊华), Tan Rui-Qin (谭瑞琴), Yang Ye (杨晔), Xu Wei (许炜), Li Jia (李佳), Shen Wen-Feng (沈文峰), Wu Guo-Qiang (吾国强), Yang Xu-Feng (杨旭峰), Song Wei-Jie (宋伟杰). Chin. Phys. B, 2015, 24(7): 070505.
[14] Synthesis mechanism of nanoporous Sn3O4 nanosheets by hydrothermal process without any additives
Zhao Jun-Hua (赵俊华), Tan Rui-Qin (谭瑞琴), Yang Ye (杨晔), Xu Wei (许炜), Li Jia (李佳), Shen Wen-Feng (沈文峰), Wu Guo-Qiang (吾国强), Zhu You-Liang (朱友良), Yang Xu-Feng (杨旭峰), Song Wei-Jie (宋伟杰). Chin. Phys. B, 2015, 24(6): 066202.
[15] Transient competition between photocatalysis and carrier recombination in TiO2 nanotube film loaded with Au nanoparticles
Shao Zhu-Feng (邵珠峰), Yang Yan-Qiang (杨延强), Liu Shu-Tian (刘树田), Wang Qiang (王强). Chin. Phys. B, 2014, 23(9): 096102.
No Suggested Reading articles found!