Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 028502    DOI: 10.1088/1674-1056/ab65b5
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Memristor-based vector neural network architecture

Hai-Jun Liu(刘海军), Chang-Lin Chen(陈长林), Xi Zhu(朱熙), Sheng-Yang Sun(孙盛阳), Qing-Jiang Li(李清江), Zhi-Wei Li(李智炜)
College of Electronic Science, National University of Defense Technology, Changsha 410073, China
Abstract  Vector neural network (VNN) is one of the most important methods to process interval data. However, the VNN, which contains a great number of multiply-accumulate (MAC) operations, often adopts pure numerical calculation method, and thus is difficult to be miniaturized for the embedded applications. In this paper, we propose a memristor based vector-type backpropagation (MVTBP) architecture which utilizes memristive arrays to accelerate the MAC operations of interval data. Owing to the unique brain-like synaptic characteristics of memristive devices, e.g., small size, low power consumption, and high integration density, the proposed architecture can be implemented with low area and power consumption cost and easily applied to embedded systems. The simulation results indicate that the proposed architecture has better identification performance and noise tolerance. When the device precision is 6 bits and the error deviation level (EDL) is 20%, the proposed architecture can achieve an identification rate, which is about 92% higher than that for interval-value testing sample and 81% higher than that for scalar-value testing sample.
Keywords:  memristor      memristive devices      vector neural network      interval  
Received:  25 September 2019      Revised:  11 November 2019      Accepted manuscript online: 
PACS:  85.35.-p (Nanoelectronic devices)  
  87.19.lv (Learning and memory)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471377, 61804181, 61604177, and 61704191).
Corresponding Authors:  Zhi-Wei Li     E-mail:  lizhiwei@nudt.edu.cn

Cite this article: 

Hai-Jun Liu(刘海军), Chang-Lin Chen(陈长林), Xi Zhu(朱熙), Sheng-Yang Sun(孙盛阳), Qing-Jiang Li(李清江), Zhi-Wei Li(李智炜) Memristor-based vector neural network architecture 2020 Chin. Phys. B 29 028502

[1] Liu H J, Liu Z, Jiang W L and Zhou Y Y 2010 IET Signal Process. 4 137
[2] Shieh C and Lin C 2002 IEEE T. Anten. Propag. 50 1120
[3] Chen X, Li D, Yang X and Li H 2018 Int. J. Aeronaut. Space 19 685
[4] Chen X and Hu W D 2012 Electron. Lett. 48 1156
[5] Sun J, Xu G, Ren W and Yan Z 2018 IET Radar Sonar. Nav. 12 862
[6] Chua L 1971 IEEE Trans. Circuit Theory 18 507
[7] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[8] Sun Y, Xu H, Liu S, Song B, Liu H, Liu Q and Li Q 2018 IEEE Electron. Dev. Lett. 39 492
[9] Hua-Gan W, Bo-Cheng B and Mo C 2014 Chin. Phys. B 23 118401
[10] Wang S, He C, Tang J, Yang R, Shi D and Zhang G 2019 Chin. Phys. B 28 017304
[11] Upadhyay N K, Jiang H, Wang Z, Asapu S, Xia Q and Yang J J 2019 Adv. Mater. Technol. 4 1800589
[12] Burr G W, Shelby R M, Sebastian A, Kim S, Kim S, Sidler S, Virwani K, Ishii M, Narayanan P, Fumarola A, Sanches L L, Boybat I, Le Gallo M, Moon K, Woo J, Hwang H and Leblebici Y 2017 Adv. Phys. X 2 89
[13] Li C, Wang Z, Rao M, Belkin D, Song W, Jiang H, Yan P, Li Y, Lin P, Hu M, Ge N, Strachan J P, Barnell M, Wu Q, Williams R S, Yang J J and Xia Q 2019 Nat. Mach. Intell. 1 49
[14] Zhou E, Fang L, Liu R and Tang Z 2017 Chin. Phys. B 26 118502
[15] Li Z, Chen P, Xu H and Yu S 2017 IEEE T. Electron. Dev. 64 2721
[16] Zhang X, Wang W, Liu Q, Zhao X, Wei J, Cao R, Yao Z, Zhu X, Zhang F, Lv H, Long S and Liu M 2018 IEEE Electron. Dev. Lett. 39 308
[17] Li Y, Zhong Y, Zhang J, Xu L, Wang Q, Sun H, Tong H, Cheng X and Miao X 2015 Sci. Rep. 4 4096
[18] Cai F, Correll J M, Lee S H, Lim Y, Bothra V, Zhang Z, Flynn M P and Lu W D 2019 Nature Electron. 2 290
[19] Sun S, Xu H, Li J, Li Q and Liu H 2019 IEEE Access. 7 61679
[20] Li Z, Chen P, Liu H, Li Q, Xu H and Yu S 2017 IEEE T. Electron. Dev. 64 1568
[1] SBT-memristor-based crossbar memory circuit
Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚). Chin. Phys. B, 2021, 30(6): 068402.
[2] Suppression of ferroresonance using passive memristor emulator
S Poornima. Chin. Phys. B, 2021, 30(6): 068401.
[3] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[4] Implementation of synaptic learning rules by TaOx memristors embedded with silver nanoparticles
Yue Ning(宁玥), Yunfeng Lai(赖云锋), Jiandong Wan(万建栋), Shuying Cheng(程树英), Qiao Zheng(郑巧), and Jinling Yu(俞金玲). Chin. Phys. B, 2021, 30(4): 047301.
[5] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
[6] A method of generating random bits by using electronic bipolar memristor
Bin-Bin Yang(杨彬彬), Nuo Xu(许诺), Er-Rui Zhou(周二瑞), Zhi-Wei Li(李智炜), Cheng Li(李成), Pin-Yun Yi(易品筠), Liang Fang(方粮). Chin. Phys. B, 2020, 29(4): 048505.
[7] Optoelectronic memristor for neuromorphic computing
Wuhong Xue(薛武红), Wenjuan Ci(次文娟), Xiao-Hong Xu(许小红), Gang Liu(刘钢). Chin. Phys. B, 2020, 29(4): 048401.
[8] Dynamics of the two-SBT-memristor-based chaotic circuit
Mei Guo(郭梅), Meng Zhang(张萌), Ming-Long Dou(窦明龙), Gang Dou(窦刚), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2020, 29(11): 110505.
[9] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
[10] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[11] Effects of oxygen vacancy concentration and temperature on memristive behavior of SrRuO3/Nb:SrTiO3 junctions
Zhi-Cheng Wang(王志成), Zhang-Zhang Cui(崔璋璋), Hui Xu(徐珲), Xiao-Fang Zhai(翟晓芳), Ya-Lin Lu(陆亚林). Chin. Phys. B, 2019, 28(8): 087303.
[12] Energy feedback and synchronous dynamics of Hindmarsh-Rose neuron model with memristor
K Usha, P A Subha. Chin. Phys. B, 2019, 28(2): 020502.
[13] Electronic synapses based on ultrathin quasi-two-dimensional gallium oxide memristor
Shuopei Wang(王硕培), Congli He(何聪丽), Jian Tang(汤建), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017304.
[14] A generalized model of TiOx-based memristive devices andits application for image processing
Jiangwei Zhang(张江伟), Zhensen Tang(汤振森), Nuo Xu(许诺), Yao Wang(王耀), Honghui Sun(孙红辉), Zhiyuan Wang(王之元), Liang Fang(方粮). Chin. Phys. B, 2017, 26(9): 090502.
[15] Attempt to generalize fractional-order electric elements to complex-order ones
Gangquan Si(司刚全), Lijie Diao(刁利杰), Jianwei Zhu(朱建伟), Yuhang Lei(雷妤航), Yanbin Zhang(张彦斌). Chin. Phys. B, 2017, 26(6): 060503.
No Suggested Reading articles found!