Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 017401    DOI: 10.1088/1674-1056/ab5a3d
Special Issue: TOPICAL REVIEW — Fundamental research under high magnetic fields
TOPICAL REVIEW—Fundamental research under high magnetic fields Prev   Next  

Specific heat in superconductors

Hai-Hu Wen(闻海虎)
School of Physics, Nanjing University, Nanjing 210093, China
Abstract  Specific heat is a powerful tool to investigate the physical properties of condensed materials. Superconducting state is achieved through the condensation of paired electrons, namely, the Cooper pairs. The condensed Cooper pairs have lower entropy compared with that of electrons in normal metal, thus specific heat is very useful in detecting the low lying quasiparticle excitations of the superconducting condensate and the pairing symmetry of the superconducting gap. In this brief overview, we will give an introduction to the specific heat investigation of the physical properties of superconductors. We show the data obtained in cuprate and iron based superconductors to reveal the pairing symmetry of the order parameter.
Keywords:  specific heat      gap symmetry      low lying quasiparticle excitations      cuprates      iron based superconductors  
Received:  24 October 2019      Published:  05 January 2020
PACS:  74.25.Bt (Thermodynamic properties)  
  74.20.Rp (Pairing symmetries (other than s-wave))  
  74.70.Xa (Pnictides and chalcogenides)  
  74.72.-h (Cuprate superconductors)  
Corresponding Authors:  Hai-Hu Wen     E-mail:  hhwen@nju.edu.cn

Cite this article: 

Hai-Hu Wen(闻海虎) Specific heat in superconductors 2020 Chin. Phys. B 29 017401

[1] Clogston A M 1962 Phys. Rev. Lett. 9 266
[2] Chandrasekhar B S 1962 Appl. Phys. Lett. 1 7
[3] Tsuei C C and Kirtley J R 2000 Rev. Mod. Phys. 72 969
[4] Timusk T and Statt B 1999 Rep. Prog. Phys. 62 61
[5] Hussey N E 2002 Adv. Phys. 51 1685
[6] Xiang T 2000 d-wave superconductivity (Beijing: Scientific Publishing Company)
[7] Wen H H, et al. 2005 Phys. Rev. B 72 134507
[8] Wen H H, et al. 2004 Phys. Rev. B 70 214505
[9] Caroli C and de Gennes P G 1964 J. Matricon. Phys. Letts. 9 307
[10] Gygi F and Schluter M 1991 Phys. Rev. B 43 7609
[11] Hayashi N and Ichioka M 1998 K. Machida. Phys. Rev. Lett. 80 2921
[12] Hess H F, et al. 1990 Phys. Rev. Lett. 64 2711
[13] Volovik G E 1993 JETP Lett. 58 469
[14] Wen H H 2008 J. Phys. Chem. Solids 69 3236
[15] Kopnin N B and Volovik G E 1996 JETP Lett. 64 690
[16] Simon S H and Lee P A 1997 Phys. Rev. Lett. 78 1548
[17] Volovik G E 1997 JETP Lett. 65 491
[18] Kübert C and Hirschfeld P J 1998 Solid State Commun. 105 459
[19] Wang Y, et al. 2007 Phys. Rev. B 76 064512
[20] Moler K A, et al. 1997 Phys. Rev. B 55 3954
[21] Garg A, et al. 2008 Nat. Phys. 4 762
[22] Wen X G and Lee P A 1998 Phys. Rev. Lett. 80 2193
[23] Norman M R, et al. 1998 Nature 392 157
[24] Orenstein J and Millis A J 2000 Science 288 480
[25] Norman M R, et al. 2005 Adv. Phys. 54 715
[26] Damascelli A, et al. 2003 Rev. Mod. Phys. 75 473
[27] Ding H, et al. 1996 Nature 382 51
[28] Sutherland M, et al. 2003 Phys. Rev. B 67 174520
[29] Alloul H, et al. 1991 Phys. Rev. Lett. 67 3140
[30] Renner C, et al. 1998 Phys. Rev. Lett. 80 149
[31] Loram J, et al. 1998 Research Review, University Cambridge (IRC in Superconductivity, London), p. 77
[32] Yoshida T, et al. 2006 Phys. Rev. B 74 224510
[33] Junod A 1990 Physical Properties of HTSC II (Ginsberg D, Ed.) (Singapore: World Scientific)
[34] Phillips N E, et al. 1992 Progress in Low Temperature Physics (Brewer D F, Ed.) (Amsterdam: Elsevier Science Publishers B V)
[35] Fisher R A, et al. 2007 Handbook of High-Temperature Superconductivity: Theory and Experiment (Schrieffer J R and Brooks J S, Ed.) (Amsterdam: Springer-Verlag)
[36] Wright D A, et al. 1999 Phys. Rev. Lett. 82 1550
[37] Chen S J, et al. 1998 Phys. Rev. B 58 R14753
[38] Fisher R A, et al. 2000 Phys. Rev. B 61 1473
[39] Nohara M, et al. 2000 J. Phys. Soc. Jpn. 69 1602
[40] Revaz B, et al. 1998 Phys. Rev. Lett. 80 3364
[41] Wen H H and Wen X G 2007 Physica C 460–462 28
[42] Badoux S, et al. 2016 Nature 531 210
[43] Nakano T, et al. 1998 J. Phys. Soc. Jpn. 67 2622
[44] Panagopoulos C and Xiang T 1998 Phys. Rev. Lett. 81 2336
[45] Loram J W, et al. 2001 J. Phys. Chem. Solids 62 59
[46] Matsuzaki T, et al. 2004 J. Phys. Soc. Jpn. 73 2232
[47] Tallon J L, et al. 1995 Phys. Rev. B 51 R12911
[48] Li S L 2011 Annu. Rev. Condens. Matter Phys. 2 121
[49] Chu C W 2009 Nat. Phys. 5 787
[50] Hardy F, et al. 2010 Europhys. Lett. 91 47008
[51] Mu G, et al. 2009 Phys. Rev. B 79 174501
[52] Zeng B, et al. 2011 Phys. Rev. B 83 144511
[53] Hardy F, et al. 2013 Phys. Rev. Lett. 111 027002
[54] Xing J, et al. 2014 Phys. Rev. B 89 140503
[55] Chen G Y, Zhu X Y, Yang H and Wen H H 2017 Phys. Rev. B 96 064524
[56] Ding H, et al. 2008 EPL 83 47001
[57] Shan L, et al. 2011 Phys. Rev. B 83 060510
[58] Sprau P O, et al. 2017 Science 357 75-80
[59] Mazin I I, et al. 2008 Phys. Rev. Lett. 101 057003
[60] Kuroki K, et al. 2008 Phys. Rev. Lett. 101 087004
[1] Superconducting anisotropy and vortex pinning in CaKFe4As4 and KCa2Fe4As4F2
A B Yu(于奥博), Z Huang(黄喆), C Zhang(张驰), Y F Wu(吴宇峰), T Wang(王腾), T Xie(谢涛), C Liu(刘畅), H Li(李浩), W Peng(彭炜), H Q Luo(罗会仟), G Mu(牟刚), H Xiao(肖宏), L X You(尤立星), and T Hu(胡涛). Chin. Phys. B, 2021, 30(2): 027401.
[2] High-magnetic-field induced charge order in high-Tc cuprate superconductors
L X Zheng(郑立玄), J Li(李建), T Wu(吴涛). Chin. Phys. B, 2019, 28(11): 117402.
[3] First principles study and comparison of vibrational and thermodynamic properties of XBi (X= In, Ga, B, Al)
Raheleh Pilevar Shahri, Arsalan Akhtar. Chin. Phys. B, 2017, 26(9): 093107.
[4] Fluctuating specific heat in two-band superconductors
Lei Qiao(乔雷), Cheng Chi(迟诚), Jiangfan Wang(王江帆). Chin. Phys. B, 2017, 26(11): 117401.
[5] Magnetocaloric and magnetic properties of La2NiMnO6 double perovskite
Masrour R, Jabar A. Chin. Phys. B, 2016, 25(8): 087502.
[6] Hybrid crystals of cuprates and iron-based superconductors
Xia Dai(代霞), Cong-Cong Le(勒聪聪), Xian-Xin Wu(吴贤新), Jiang-Ping Hu(胡江平). Chin. Phys. B, 2016, 25(7): 077402.
[7] Temperature-dependent specific heat of suspended platinum nanofilms at 80-380 K
Qin-Yi Li(李秦宜), Masahiro Narasaki(楢崎将弘), Koji Takahashi(高桥厚史), Tatsuya Ikuta(生田竜也), Takashi Nishiyama(西山贵史), Xing Zhang(张兴). Chin. Phys. B, 2016, 25(11): 114401.
[8] Theory of specific heat of vortex liquid of high Tc superconductors
Chen Bai(白晨), Cheng Chi(迟诚), Jiangfan Wang(王江帆). Chin. Phys. B, 2016, 25(10): 107404.
[9] Effects of a finite number of particles on the thermodynamic properties of a harmonically trapped ideal charged Bose gas in a constant magnetic field
Duan-Liang Xiao(肖端亮), Meng-Yun Lai(赖梦云), Xiao-Yin Pan(潘孝胤). Chin. Phys. B, 2016, 25(1): 010307.
[10] Phase transition and critical behavior ofspin-orbital coupled spinel ZnV2O4
Li Wang(王理), Rong-juan Wang(王蓉娟), Yuan-yuan Zhu(朱媛媛), Zhi-hong Lu(卢志红),Rui Xiong(熊锐), Yong Liu(刘雍), Jing Shi(石兢). Chin. Phys. B, 2016, 25(1): 016802.
[11] Monte Carlo study of the magnetic properties of spin liquid compound NiGa2S4
Zhang Kai-Cheng, Li Yong-Feng, Liu Yong, Chi Feng. Chin. Phys. B, 2014, 23(5): 057501.
[12] Determining the thermophysical properties of Al-doped ZnO nanoparticles by the photoacoustic technique
T. A. El-Brolossy, O. Saber, S. S. Ibrahim. Chin. Phys. B, 2013, 22(7): 074401.
[13] Effects of anisotropy and magnetic fields on the specific heat of a quasi-two-dimensional Boltzmann gas in an elliptical parabolic quantum dot
Zhai Zhi-Yuan, Li Yu-Qi, Pan Xiao-Yin. Chin. Phys. B, 2012, 21(7): 070506.
[14] Thermal properties of single-walled carbon nanotube crystal
Hu Li-Jun, Liu Ji, Liu Zheng, Qiu Cai-Yu, Zhou Hai-Qing, Sun Lian-Feng. Chin. Phys. B, 2011, 20(9): 096101.
[15] Theoretical calculations of thermophysical properties of single-wall carbon nanotube bundles
Miao Ting-Ting, Song Meng-Xuan, Ma Wei-Gang, Zhang Xing. Chin. Phys. B, 2011, 20(5): 056501.
No Suggested Reading articles found!