Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 118101    DOI: 10.1088/1674-1056/ab457c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Chemical vapor deposition growth of crystal monolayer SnS2 with NaCl-assistant

Xiao-Xu Liu(刘晓旭), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yong-Sheng Wang(王永生), Ming Fu(富鸣)
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiao Tong University, Beijing 100044, China
Abstract  As an important member of the two-dimensional layers of metal dichalcogenides family, the two-dimensional (2D) group IV metal chalcogenides (GIVMCs) have been attracting intensive attention. However, the growth of monolayer tin disulfide (SnS2) remains a great challenge contrasted to transition metal dichalcogenides, which have been studied quite maturely. Till date, there have been scant reports on the growth of large-scale and large-size monolayer SnS2. Here, we successfully synthesized monolayer SnS2 crystal on SiO2/Si substrates via NaCl-assisted CVD and the edge can be as long as 80 μm. Optical microscope, Raman spectroscopy, x-ray diffraction, atomic force microscopy (AFM), and energy-dispersion x-ray (EDX) were performed respectively to investigate the morphology, crystallographic structure, and optical property of the 2D SnS2 nanosheets. In addition, we discussed the growing mechanism of the NaCl-assisted CVD method.
Keywords:  group IV metal chalcogenides      tin disulfide      two-dimensional materials      chemical vapor deposition  
Received:  24 June 2019      Revised:  12 September 2019      Accepted manuscript online: 
PACS:  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0202302), the National Natural Science Foundation of China (Grant Nos. 61527817, 61875236, 61905010, and 61975007), and the Overseas Expertise Introduction Center for Discipline Innovation, 111 Center, China.
Corresponding Authors:  Da-Wei He     E-mail:  dwhe@bjtu.edu.cn

Cite this article: 

Xiao-Xu Liu(刘晓旭), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yong-Sheng Wang(王永生), Ming Fu(富鸣) Chemical vapor deposition growth of crystal monolayer SnS2 with NaCl-assistant 2019 Chin. Phys. B 28 118101

[35] Sriv T, Kim K and Cheong H 2018 Sci. Rep. 8 10194
[1] Rubén M B, Cristina G N, Julio G H and Félix Z 2011 Nanoscale 3 20
[36] De Groot C H, Gurnani C, Hector A L, Huang R, Jura M, Levason W and Reid G 2012 Chem. Mater. 24 4442
[2] Butler S Z, Hollen S M, Linyou C, Yi C, Gupta J A, Gutiérrez H R, Heinz T F, Seung Sae H, Jiaxing H and Ismach A F 2013 ACS Nano 7 2898
[37] Gonzalez J M and Oleynik I I 2016 Phys. Rev. B 94 125443
[3] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C T, Chang K D, Yu Y C, Wang J T, Chang C S and Li L J 2012 Adv. Mater. 24 2320
[38] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385
[4] Cong C, Shang J, Wu X, Cao B, Peimyoo N, Qiu C, Sun L and Yu T 2014 Adv. Opt. Mater. 2 131
[39] Wieting T J and Verble J L 1972 Phys. Rev. B 5 1473
[5] Hai L, Zongyou Y, Qiyuan H, Hong L, Xiao H, Gang L, Fam D W H, Tok A I Y, Qing Z and Hua Z 2012 Small 8 63
[6] Tan C and Zhang H 2015 Chem. Soc. Rev. 44 2713
[7] Lu Q, Yu Y, Ma Q, Chen B and Zhang H 2016 Adv. Mater. 28 1917
[8] Wu D, Wang Y, Zeng L, Jia C, Wu E, Xu T, Shi Z, Tian Y, Li X and Tsang Y H 2018 ACS Photon. 5 3820
[9] Zhuo R, Zeng L, Yuan H, Wu D, Wang Y, Shi Z, Xu T, Tian Y, Li X and Tsang Y H 2019 Nano Res. 12 183
[10] Wu E, Wu D, Jia C, Wang Y, Yuan H, Zeng L, Xu T, Shi Z, Tian Y and Li X 2019 ACS Photon. 6 565
[11] Zhuo R, Wang Y, Wu D, Lou Z, Shi Z, Xu T, Xu J, Tian Y and Li X 2018 J. Mater. Chem. C 6 299
[12] Wu D, Guo J, Du J, Xia C, Zeng L, Tian Y, Shi Z, Tian Y, Li X J and Tsang Y H 2019 ACS Nano
[13] Gong Y, Yuan H, Wu C L, Tang P, Yang S Z, Yang A, Li G, Liu B, van de Groep J and Brongersma M L 2018 Nat. Nanotechnol. 13 294
[14] Feng J, Chen J, Geng B, Feng H, Li H, Yan D, Zhuo R, Cheng S, Wu Z and Yan P 2011 Appl. Phys. A 103 413
[15] Huang Y, Sutter E, Sadowski J T, Cotlet M, Monti O L A, Racke D A, Neupane M R, Wickramaratne D, Lake R K and Parkinson B A 2014 ACS Nano 8 10743
[16] Rahman A, Kim H J, NoorA-Alam M and Shin Y H 2019 Current Applied Physics
[17] Su G, Hadjiev V G, Loya P E, Zhang J, Lei S, Maharjan S, Dong P M, Ajayan P, Lou J and Peng H 2014 Nano Lett. 15 506
[18] Sun Y, Cheng H, Gao S, Sun Z, Liu Q, Liu Q, Lei F, Yao T, He J and Wei S 2012 Angew. Chem. Int. Ed. 51 8727
[19] Xia J, Zhu D, Wang L, Huang B, Huang X and Meng X M 2015 Adv. Funct. Mater. 25 4255
[20] Ahn J H, Lee M J, Heo H, Sung J H, Kim K, Hwang H and Jo M H 2015 Nano Lett. 15 3703
[21] Liu J, Liu X, Chen Z, Miao L, Liu X, Li B, Tang L, Chen K, Liu Y and Li J 2019 Nano Res. 12 463
[22] Song H S, Li S L, Gao L, Xu Y, Ueno K, Tang J, Cheng Y B and Tsukagoshi K 2013 Nanoscale 5 9666
[23] Li Q, Wei A, Guo Z, Liu J, Zhao Y and Xiao Z 2018 J. Mater. Sci.:Mater. Electron. 29 16057
[24] Kim C, Park J C, Choi S Y, Kim Y, Seo S Y, Park T E, Kwon S H, Cho B and Ahn J H 2018 Small 14 1704116
[25] Řičica T, Střižík L, Dostál L, Bouška M, Vlček M, Beneš L, Wágner T and Jambor R 2015 Appl. Organomet. Chem. 29 176
[26] Liu Q, Zhou Y, Kou J, Chen X, Tian Z, Gao J, Yan S and Zou Z 2010 J. Am. Chem. Soc. 132 14385
[27] Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H and Lei J 2018 Nature 556 355
[28] Ye G, Gong Y, Lei S, He Y, Li B, Zhang X, Jin Z, Dong L, Lou J and Vajtai R 2017 Nano Res. 10 2386
[29] Burton L A, Colombara D, Abellon R D, Grozema F C, Peter L M, Savenije T J, Dennler G and Walsh A 2013 Chem. Mater. 25 4908
[30] Zhang H, van Pelt T, Mehta A N, Bender H, Radu I, Caymax M, Vandervorst W and Delabie A 2018 2D Materials 5 035006
[31] Zhou X, Zhang Q, Gan L, Li H and Zhai T 2016 Adv. Funct. Mater. 26 4405
[32] Wang Z and Pang F 2017 RSC Adv. 7 29080
[33] Seminovski Y, Palacios P and Wahnón P 2013 Thin Solid Films 535 387
[34] Bhatt S V, Deshpande M P, Sathe V and Chaki S H 2015 Solid State Commun. 201 54
[35] Sriv T, Kim K and Cheong H 2018 Sci. Rep. 8 10194
[36] De Groot C H, Gurnani C, Hector A L, Huang R, Jura M, Levason W and Reid G 2012 Chem. Mater. 24 4442
[37] Gonzalez J M and Oleynik I I 2016 Phys. Rev. B 94 125443
[38] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A and Baillargeat D 2012 Adv. Funct. Mater. 22 1385
[39] Wieting T J and Verble J L 1972 Phys. Rev. B 5 1473
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[4] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[5] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[6] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[7] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[8] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[9] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
[10] A simple method to synthesize worm-like AlN nanowires and its field emission studies
Qi Liang(梁琦), Meng-Qi Yang(杨孟骐), Chang-Hao Wang(王长昊), and Ru-Zhi Wang(王如志). Chin. Phys. B, 2021, 30(8): 087302.
[11] Effect of electrical contact on performance of WSe2 field effect transistors
Yi-Di Pang(庞奕荻), En-Xiu Wu(武恩秀), Zhi-Hao Xu(徐志昊), Xiao-Dong Hu(胡晓东), Sen Wu(吴森), Lin-Yan Xu(徐临燕), and Jing Liu(刘晶). Chin. Phys. B, 2021, 30(6): 068501.
[12] Two-dimensional PC3 as a promising anode material for potassium-ion batteries: First-principles calculations
Chun Zhou(周淳), Junchao Huang(黄俊超), and Xiangmei Duan(段香梅). Chin. Phys. B, 2021, 30(5): 056801.
[13] High-responsivity solar-blind photodetector based on MOCVD-grown Si-doped β-Ga2O3 thin film
Yu-Song Zhi(支钰崧), Wei-Yu Jiang(江为宇), Zeng Liu(刘增), Yuan-Yuan Liu(刘媛媛), Xu-Long Chu(褚旭龙), Jia-Hang Liu(刘佳航), Shan Li(李山), Zu-Yong Yan(晏祖勇), Yue-Hui Wang(王月晖), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2021, 30(5): 057301.
[14] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[15] Effect of hydrogen content on dielectric strength of the silicon nitride film deposited by ICP-CVD
Yudong Zhang(张玉栋), Jiale Tang(唐家乐), Yongjie Hu(胡永杰), Jie Yuan(袁杰), Lulu Guan(管路路), Xingyu Li(李星雨), Hushan Cui(崔虎山), Guanghui Ding(丁光辉), Xinying Shi(石新颖), Kaidong Xu(许开东), and Shiwei Zhuang(庄仕伟). Chin. Phys. B, 2021, 30(4): 048103.
No Suggested Reading articles found!