Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 090501    DOI: 10.1088/1674-1056/ab38a4
GENERAL Prev   Next  

Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system

Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲)
School of Science, Wuhan University of Technology, Wuhan 430070, China

A new Willis aneurysm system is proposed, which contains the Atangana-Baleanu(AB) fractional derivative. we obtain the numerical solution of the Atangana-Baleanu fractional Willis aneurysm system (ABWAS) with the AB fractional integral and the predictor-corrector scheme. Moreover, we research the chaotic properties of ABWAS with phase diagrams and Poincare sections. The different values of pulse pressure and system order are used to evaluate and compare their effects on ABWAS. The simulations verify that the changes of pulse pressure and system order are the significant reason for ABWAS' states varying from chaotic to steady. In addition, compared with Caputo fractional WAS (FWAS), ABWAS shows less state that is chaotic. Furthermore, the results of bifurcation diagrams of blood flow damping coefficient and reciprocal heart rate show that the blood flow velocity tends to stabilize with the increase of blood flow damping coefficient or reciprocal heart rate, which is consistent with embolization therapy and drug therapy for clinical treatment of cerebral aneurysms. Finally, in view of the fact that ABWAS in chaotic state increases the possibility of rupture of cerebral aneurysms, a reasonable controller is designed to control ABWAS based on the stability theory. Compared with the control results of FWAS by the same method, the results show that the blood flow velocity in the ABWAS system varies in a smaller range. Therefore, the control effect of ABWAS is better and more stable. The new Willis aneurysm system with Atangana-Baleanu fractional derivative provides new information for the further study on treatment and control of brain aneurysms.

Keywords:  fractional Willis aneurysm system      Atangana-Baleanu fractional differential      Poincaré      section      chaos control  
Received:  23 April 2019      Revised:  14 June 2019      Published:  05 September 2019
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  

Project supported by the State Key Program of the National Natural Science of China (Grant No. 91324201), the Fundamental Research Funds for the Central Universities of China, the Self-determined and Innovative Research Funds of WUT, China (Grant No. 2018IB017), and the Natural Science Foundation of Hubei Province of China (Grant No. 2014CFB865).

Corresponding Authors:  Fei Gao     E-mail:

Cite this article: 

Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲) Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system 2019 Chin. Phys. B 28 090501

[41] Wu Y F, Shen J, Huang Q H, Xiang J P, Meng H and Lu J M 2012 Acad. J. Second Mil. Med. Univ. 33 195199(in Chinese)
[1] Ji Q B, Zhou Y, Yang Z Q and Meng X Y 2015 Chin. Phys. Lett. 32 050501
[42] Liu X and Wen C 2018 Med. Philos. 39 3336(in Chinese)
[2] Wang X Y, Wang Y, Wang S W, Zhang Y Q and Wu X J 2018 Chin. Phys. B 27 110502
[3] Zhang R, Peng M, Zhang Z D and Bi Q S 2018 Chin. Phys. B 27 110501
[4] Sadasivan C, Fiorella D J, Woo H H and Lieber B B 2013 Ann. Biomed. Eng. 41 13471365
[5] Austin G 1971 Math. Biosci. 11 163172
[6] Liu T Y and Wan S D 1989 J. Biomath. 1 2128(in Chinese)
[7] Liu T Y and Li C X 1990 J. Yunnan Inst. Technol. 4 0108(in Chinese)
[8] Cao J D and Liu T Y 1993 J. Biomath. 2 0916(in Chinese)
[9] Yang C H and Zhu S M 2003 Acta Sci. Nat. Univ. Sunyatseni 42 0103(in Chinese)
[10] Feng C H 1998 J. Biomath. 13 6164(in Chinese)
[11] Nieto J J and Torres A 2000 Nonlinear Anal. 40 513521
[12] Li Y M and Yu S 2008 J. Biomath. 23 235238(in Chinese)
[13] Peng S H, Li D H, Su Z and Li H D 2010 Comput. Eng. Appl. 46 245248(in Chinese)
[14] Sun M H, Xiao J and Dong H L 2016 Highlights of Sciencepaper Online 9 640(in Chinese)
[15] Gao F, Li T, Tong H Q and Ou Z L 2016 Acta Phys.Sin. 65 5262(in Chinese)
[16] Atangana A 2015 Derivative with a new parameter:Theory, methods and applications (New York:Academic Press) pp. 73-150
[17] Sheikh N A, Ali F, Khan I and Saqib M 2018 Neural Comput. Appl. 30 18651875
[18] Caputo M and Fabrizio M 2015 Progr. Fract. Differ. Appl. 1 7385
[19] Saqib M, Ali F, Khan I, Sheikh N A, Jan S A A and Samiulhaq 2018 Alexandria Eng. J. 57 18491858
[20] Atangana A and Gómez-Aguilar J F 2017 Chaos, Solitons Fractals 102 285294
[21] Atangana A and Gómez-Aguilar J F 2017 Physica A 476 0114
[22] Atangana A and Baleanu D 2016 Therm. Sci. 20
[23] Gómez-Aguilar J F, Escobar-Jiménez R F, López-López M G and Alvarado-Martínez V M 2016 J. Electromagn. Waves. Appl. 30 19371952
[24] Bas E and Ozarslan R 2018 Chaos, Solitons Fractals 116 121125
[25] Owolabi K M 2018 Eur. Phys. J. Plus 133 15
[26] Coronel-Escamilla A, Gómez-Aguilar J, Baleanu D, Cérdova-Fraga T, Escobar-Jimónez R, Olivares-Peregrino V and Qurashi M 2017 Entropy 19 55
[27] Gómez-Aguilar J, Morales-Delgado V, Taneco-Hernández M, Baleanu D, Escobar-Jiménez R and Al Qurashi M 2016 Entropy 18 402
[28] Gómez-Aguilar J F, Atangana A and Morales-Delgado V F 2017 Int. J. Circuit Theory Appl. 45 15141533
[29] Kashif A A, Mukkarum H and Mirza M B 2017 Eur. Phys. J. Plus 132 439
[30] Sheikh N A, Ali F, Khan I, Gohar M and Saqib M 2017 Eur. Phys. J. Plus 132 540
[31] Asjad M I, Miraj F and Khan I 2018 Eur. Phys. J. Plus 133 224
[32] Sheikh N A, Ali F, Saqib M, Khan I, Jan S A A, Alshomrani A S and Alghamdi M S 2017 Results Phys. 7 789800
[33] Alqahtani R T 2016 J. Nonlinear. Sci. Appl. 9 36473654
[34] Atangana A 2017 Fractional operators with constant and variable order with application to geo-hydrology (New York:Academic Press) pp. 52-130
[35] Atangana A and Koca I 2016 Chaos, Solitons Fractals 89 447454
[36] Omar A A and Al-Smadi M 2018 Chaos, Solitons Fractals 117 161167
[37] Zhu K Q 2009 Mech.Pract. 31 104(in Chinese)
[38] Lu K Q and Liu J X 2009 Physics 38 453(in Chinese)
[39] Saif U, Muhammad A K and Muhammad F 2018 Eur. Phys. J. Plus 133 313
[40] Alkahtani B S T 2016 Chaos, Solitons Fractals 89 547551
[41] Wu Y F, Shen J, Huang Q H, Xiang J P, Meng H and Lu J M 2012 Acad. J. Second Mil. Med. Univ. 33 195199(in Chinese)
[42] Liu X and Wen C 2018 Med. Philos. 39 3336(in Chinese)
[1] Study on γ-ray source from the resonant reaction 19F(p,αγ)16O at Ep=340 keV
Fu-Long Liu(刘伏龙), Wan-Sha Yang(杨婉莎), Ji-Hong Wei(魏继红), Di Wu(吴笛), Yang-Fan He(何阳帆), Yu-Chen Li(李雨尘), Tian-Li Ma(马田丽), Yang-Ping Shen(谌阳平), Qi-Wen Fan(樊启文), Chuang-Ye He(贺创业), Bing Guo(郭冰), Nai-Yan Wang(王乃彦). Chin. Phys. B, 2020, 29(7): 070702.
[2] Mechanism analysis of reaction S+(2D)+H2(X1Σg+)→SH+(X3Σ-)+H(2S) based on the quantum state-to-state dynamics
Jin-Yu Zhang(张金玉), Ting Xu(许婷), Zhi-Wei Ge(葛志伟), Juan Zhao(赵娟), Shou-Bao Gao(高守宝), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2020, 29(6): 063101.
[3] Double differential cross sections for ionization of H by 75 keV proton impact: Assessing the role of correlated wave functions
Jungang Fan(范军刚), Xiangyang Miao(苗向阳), and Xiangfu Jia(贾祥福). Chin. Phys. B, 2020, 29(12): 120301.
[4] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
[5] Electron capture in collisions of Li3+ ions with ground andexcited states of Li atoms
M X Ma(马茗萱), B H Kou(寇博珩), L Liu(刘玲), Y Wu(吴勇), J G Wang(王建国). Chin. Phys. B, 2020, 29(1): 013401.
[6] Factors influencing electromagnetic scattering from the dielectric periodic surface
Yinyu Wei(韦尹煜), Zhensen Wu(吴振森), Haiying Li(李海英), Jiaji Wu(吴家骥), Tan Qu(屈檀). Chin. Phys. B, 2019, 28(7): 074101.
[7] Non-adiabatic quantum dynamical studies of Na(3p)+HD(ν=1, j=0)→NaH/NaD+D/H reaction
Yue-Pei Wen(温月佩), Bayaer Buren(布仁巴雅尔), Mao-Du Chen(陈茂笃). Chin. Phys. B, 2019, 28(6): 063401.
[8] Anisotropic stimulated emission cross-section measurement in Nd: YVO4
Rui Guo(郭瑞), Yijie Shen(申艺杰), Yuan Meng(孟鸢), Mali Gong(巩马理). Chin. Phys. B, 2019, 28(4): 044204.
[9] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
[10] Reaction mechanism of D+ND→N+D2 and its state-to-state quantum dynamics
Ting Xu(许婷), Juan Zhao(赵娟), Xian-Long Wang(王宪龙), Qing-Tian Meng(孟庆田). Chin. Phys. B, 2019, 28(2): 023102.
[11] Dynamics of the Au+H2 reaction by time-dependent wave packet and quasi-classical trajectory methods
Yong Zhang(张勇), Chengguo Jiang(姜成果). Chin. Phys. B, 2019, 28(12): 123101.
[12] Single event upset on static random access memory devices due to spallation, reactor, and monoenergetic neutrons
Xiao-Ming Jin(金晓明), Wei Chen(陈伟), Jun-Lin Li(李俊霖), Chao Qi(齐超), Xiao-Qiang Guo(郭晓强), Rui-Bin Li(李瑞宾), Yan Liu(刘岩). Chin. Phys. B, 2019, 28(10): 104212.
[13] Relativistic R-matrix calculations for L-shell photoionization cross sections of C Ⅱ
Lu-You Xie(颉录有), Qian-Qian Man(满倩倩), Jian-Guo Wang(王建国), Yi-Zhi Qu(屈一至), Chen-Zhong Dong(董晨钟). Chin. Phys. B, 2018, 27(8): 083201.
[14] Reliable approach for bistatic scattering of three-dimensional targets from underlying rough surface based on parabolic equation
Dong-Min Zhang(张东民), Cheng Liao(廖成), Liang Zhou(周亮), Xiao-Chuan Deng(邓小川), Ju Feng(冯菊). Chin. Phys. B, 2018, 27(7): 074102.
[15] Electron-impact single ionizaiton for W4+ and W5+
Denghong Zhang(张登红), Luyou Xie(颉录有), Jun Jiang(蒋军), Zhongwen Wu(武中文), Chenzhong Dong(董晨钟), Yinglong Shi(师应龙), Yizhi Qu(屈一至). Chin. Phys. B, 2018, 27(5): 053402.
No Suggested Reading articles found!