Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 048701    DOI: 10.1088/1674-1056/28/4/048701
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons

Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新)
Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Abstract  

Microtubules (MTs) are part of the cellular cytoskeleton and they play a role in many activities, such as cell division and maintenance of cell shape. In recent years, MTs have been thought to be involved in storing and processing information. Several models have been developed to describe the information-processing ability of MTs. In these models, MTs are considered as a device that can transmit quantum information. However, MTs are affected by the “wet and warm” cellular environment, thus it is essential to calculate the decoherence time. Many researchers have attempted to calculate this parameter but the values that have been obtained vary markedly. Previous studies considered the cellular environment as a distant ion; however, this treatment is somewhat simplified. In this study, we develop a model to determine the decoherence time in neuronal MTs while considering the interaction effects of the neuronal fluid environment. The neuronal environment is considered as a plasmon reservoir. The coupling between MTs and neuronal environment occurs due to the interaction between dipoles and plasmon. The interaction Hamiltonian is derived by using the second quantization method, and the coupling coefficient is calculated. Finally, the decoherence time scale is estimated according to the interaction Hamiltonian. In this paper, the time scale of decoherence in MTs is approximately 1 fs-100 fs. This model may be used as a reference in other decoherence processes in biological tissues.

Keywords:  consciousness      microtubules      quantum decoherence  
Received:  19 November 2018      Revised:  03 December 2018      Published:  05 April 2019
PACS:  87.10.-e (General theory and mathematical aspects)  
  87.10.Vg (Biological information)  
Corresponding Authors:  Chuanxiang Tang     E-mail:  tang.xuh@tsinghua.edu.cn

Cite this article: 

Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新) A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons 2019 Chin. Phys. B 28 048701

[1] Turin L 1996 Chem. Senses 21 773
[2] Franco M I and Siddiqi O 2011 Proc. Natl. Acad. Sci. USA 108 3797
[3] Ritz T, Adem S and Schulten K 2000 Biophys. J. 78 707
[4] Hiscock H G, Worster S, Kattnig D R, Steers C, Jin Y, Manolopoulos D E, Mouritsen H and Hore P J 2016 Proc. Natl. Acad. Sci. USA 113 201600341
[5] Gregory S E, Tessa R C, Elizabeth L R, Tae-Kyu A, Tomás M, Yuan-Chung C, Robert E B and Graham R F 2007 Nature 446 782
[6] Romero E, Augulis R, Novoderezhkin V I, Ferretti M, Thieme J, Zigmantas D and Van Grondelle R 2014 Nat. Phys. 10 676
[7] Levi F, Mostarda S, Rao F and Mintert F 2015 Rep. Prog. Phys. 78 082001
[8] Novelli F, Nazir A, Richards G H, Roozbeh A, Wilk K E, Curmi P M and Davis J A 2015 J. Phys. Chem. Lett. 6 4573
[9] Sarovar M, Ishizaki A, Fleming G and Whaley B 2010 Nat. Phys. 3 462
[10] Marletto C, Coles D, Farrow T and Vedral V 2018 J. Phys. Commun. 2 101001
[11] Mesquita M V, Vasconcellos À R, Luzzi R and Mascarenhas S 2005 Int. J. Quantum Chem. 102 1116
[12] Jackendoff R 1987 Consciousness and the Computational Mind (Cambridge: The MIT Press) pp. 275-280
[13] Tononi G, Boly M, Massimini M and Koch C 2016 Nat. Rev. Neurosci. 17 450
[14] Crick F and Koch C 2003 Nat. Neurosci. 6 119
[15] Edelman G M 2003 Proc. Natl. Acad. Sci. USA 100 5520
[16] Jahn R G and Dunne B J 2007 Found. Phys. 3 306
[17] Mershin A, Sanabria H, Miller J H, Nawarathna D, Skoulakis E M, Mavromatos N E, Kolomenskii A A, Schuessler H A, Luduena R F and Nanopoulos D V 2006 The Emerging Physics of Consciousness (Berlin: Springer) pp. 95-170
[18] Hameroff S and Penrose R 2014 Phys. Life Rev. 11 39
[19] Hameroff S and Penrose R 2014 Phys. Life Rev. 11 94
[20] Hameroff S R and Penrose R 2017 Biophysics of Consciousness: A Foundational Approach (Singapore: World Scientific) pp. 517-599
[21] Craddock T J A and Tuszynski J A 2010 J. Biol. Phys. 36 53
[22] Craddock T J, Priel A and Tuszynski J A 2014 J. Integr. Neurosci. 13 293
[23] Fisher M 2015 Ann. Phys. 61 593
[24] Hameroff S R 2007 Cogn. Sci. 31 1035
[25] Mavromatos N E, Mershin A and Nanopoulos D V 2002 Int. J. Mod. Phys. B 16 3623
[26] Mavromatos N 1999 Bioelectrochemistry Bioenergetics 48 273
[27] Tegmark M 2000 Phys. Rev. E 61 4194
[28] Hagan S, Hameroff S R and Tuszyński J A 2002 Phys. Rev. E 65 061901
[29] Nelson P 2007 Biological Physics (New York: WH Freeman) p. 416
[30] Priel A, Tuszynski J A and Woolf N J 2005 Eur. Biophys. J. Biophys. Lett. 35 40
[31] Privman V and Tolkunov D 2005 Quantum Information and Computation Ⅲ (Bellingham: The International Society for Optics and Photonics), pp. 187-195
[32] Tolkunov D, Privman V and Aravind P K 2005 Phy. Rev. A 71 060308
[33] Craddock T J, Friesen D, Mane J, Hameroff S and Tuszynski J A 2014 J. R. Soc. Interface 11 20140677
[34] Chen Y, Okur H I, Gomopoulos N, Macias-Romero C, Cremer P S, Petersen P B, Tocci G, Wilkins D M, Liang C and Ceriotti M 2016 Sci. Adv. 2 e1501891
[35] Fröhlich H 1968 Int. J. Quantum Chem. 2 641
[36] Wu T M and Austin S J 1981 J. Biol. Phys. 9 97
[37] Bohm D and Pines D 1953 Phy. Rev. 92 609
[38] Yin C C and Biophysics D O 2018 Chin. Phys. B 27 058703
[39] Zheng C J, Jia T Q, Zhao H, Xia Y J, Zhang S A and Sun Z R 2018 Chin. Phys. B 27 057802
[40] Wade C G, Šibalić N, de Melo N R, Kondo J M, Adams C S and Weatherill K J 2017 Nat. Photon. 11 40
[41] Trocha P, Karpov M, Ganin D, Pfeiffer M H, Kordts A, Wolf S, Krockenberger J, Marin-Palomo P, Weimann C and Randel S 2018 Science 359 887
[1] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[2] Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇). Chin. Phys. B, 2017, 26(4): 040305.
[3] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
[4] Quantum speed limits for Bell-diagonal states
Han Wei, Jiang Ke-Xia, Zhang Ying-Jie, Xia Yun-Jie. Chin. Phys. B, 2015, 24(12): 120304.
[5] Propagation of kink-antikink pair along microtubules as a control mechanism for polymerization and depolymerization processes
L. Kavitha, A. Muniyappan, S. Zdravković, M. V. Satarić, A. Marlewski, S. Dhamayanthi, D. Gopi. Chin. Phys. B, 2014, 23(9): 098703.
[6] Employment of Jacobian elliptic functions for solving problems in nonlinear dynamics of microtubules
Slobodan Zeković, Annamalai Muniyappan, Slobodan Zdravković, Louis Kavitha. Chin. Phys. B, 2014, 23(2): 020504.
[7] Comparison of entanglement trapping among different photonic band gap models
Zhang Ying-Jie, Yang Xiu-Qin, Han Wei, Xia Yun-Jie. Chin. Phys. B, 2013, 22(9): 090307.
No Suggested Reading articles found!