Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 083102    DOI: 10.1088/1674-1056/27/8/083102

Forbidden transition properties of fine-structure 2p3 4S3/2-2p3 2D3/2,5/2 for nitrogen-like ions

Xiao-Kang He(何晓康), Jian-Peng Liu(刘建鹏), Xiang Zhang(张祥), Yong Shen(沈咏), Hong-Xin Zou(邹宏新)
College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China

Based on relativistic wave functions from multiconfiguration Dirac-Hartree-Fock and configuration interaction calculations, E2 and M1 transition probabilities of 2p3 4S3/2-2p3 2D3/2,5/2 are investigated in the nitrogen-like sequence with 7 ≤ Z ≤ 16. The contributions of the electron correlations, Breit interaction, and the quantum electrodynamic (QED) effects on the transition properties are analyzed. The present results can be used for diagnosing plasma. In addition, several N-like ions can also be recommended as a promising candidate for a highly charged ion (HCI) clock with a quality factor (Q) of transition as high as 1020.

Keywords:  forbidden transition probabilities      nitrogen-like ions      MCDHF method      RCI  
Received:  10 March 2018      Revised:  09 May 2018      Accepted manuscript online: 
PACS:  31.15.V- (Electron correlation calculations for atoms, ions and molecules) (Electron correlation calculations for atoms and ions: ground state)  
  31.15.vj (Electron correlation calculations for atoms and ions: excited states)  
  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11604385 and 91436103).

Corresponding Authors:  Hong-Xin Zou     E-mail:

Cite this article: 

Xiao-Kang He(何晓康), Jian-Peng Liu(刘建鹏), Xiang Zhang(张祥), Yong Shen(沈咏), Hong-Xin Zou(邹宏新) Forbidden transition properties of fine-structure 2p3 4S3/2-2p3 2D3/2,5/2 for nitrogen-like ions 2018 Chin. Phys. B 27 083102

[1] Hinkley N, Sherman J A and Phillips N B 2013 Science 341 1215
[2] Bloom B J, Nicholson T L and Williams J R 2014 Nature 506 71
[3] Campbell C J, Radnaev A G and Kuzmich A 2012 Phys. Rev. Lett. 108 120802
[4] Derevianko A, Dzuba V A and Flambaum V V 2012 Phys. Rev. Lett. 109 180801
[5] Kielpinski D, King B E and Myatt C J 2000 Phys. Rev. A 61 32310
[6] Yudin V I, Taichenachev A V and Derevianko A 2014 Phys. Rev. Lett. 113 233003
[7] Yu Y M and Sahoo B K 2016 Phys. Rev. A 94 062502
[8] Liu J P, Li C B and Zou H X 2017 Chin. Phys. B 26 103201
[9] Mohan A, Landi E and Dwivedi B N 2003 Astrophys. J. 582 1162
[10] Edlén B 1982 Phys. Scr. 26 71
[11] Edlén B 1984 Phys. Scr. 30 135
[12] Cheng K T, Kim Y K and Desclaux J P 1979 At. Data Nucl. Data Tables 24 111
[13] Clementson J, Beiersdorfer P and Browng V 2011 Can. J. Phys. 89 571
[14] Träbert E, Calamai A G and Gillaspy J D 2000 Phys. Rev. A 62 22507
[15] Träbert E, Heckmann P H and Schlagheck W, et al. 1980 Phys. Scr. 21 27
[16] Zeippen C J 1982 Mon. Not. R. Astron. Soc. 198 127
[17] Zeippen C J
[18] Becker S R, Butler K and Zeippen C J
[19] Godefroid M and Fischer C F 1984 J. Phys. B: At. Mol. Opt. Phys. 17 681
[20] Merkelis G, Martinson I and Kisielius R 1999 Phys. Scr. 59 122
[21] Vilkas M J and Ishikawa Y 2001 Adv. Quantum Chem. 39 261
[22] Fischer C F and Tachiev G I 2004 At. Data Nucl. Data Tables 87 1
[23] Tachiev G I and Fischer C F 2002 Astronomy & Astrophysics 385 716
[24] Wang X L, Chen S H, Han X Y and Li J M 2008 Chin. Phys. Lett. 25 903
[25] Rynkun P, Jönsson P and Gaigalas G 2014 At. Data Nucl. Data Tables 100 315
[26] Han X Y, Gao X, Zeng D L, et al. 2014 Phys. Rev. A 89 042514
[27] Garstang R H 1960 Mon. Not. R. Astron. Soc. 120 201
[28] Naqvi A M 1951 “Mutual magnetic interaction in p-electron configurations (with calculations of transition probabilities and astrophysical applications)”, Ph. D. thesis (Harvard University)
[29] Dyall K G, Grant I P, Johnson C T, Parpia F A and Plummer E P 1989 Comput. Phys. Commun. 55 425
[30] Olsen J, Godefroid M R, Jönsson P, et al. 1995 Phys. Rev. E 52 4499
[31] Jönsson P, He X, Fischer C F, et al. 2007 Comput. Phys. Commun. 177 597
[32] Fischer C F, Brage T and Jönsson P 1997 Computational Atomic Structure: An MCHF Approach (Bristol and Philadelphia: Institute of Physics Publishing)
[33] Zhou F, Qu Y, Li J and Wang J 2015 Phys. Rev. A 92 052505
[1] Configuration interaction study on low-lying states of AlCl molecule
Xiao-Ying Ren(任笑影), Zhi-Yu Xiao(肖志宇), Yong Liu(刘勇), and Bing Yan(闫冰). Chin. Phys. B, 2021, 30(5): 053101.
[2] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[3] Theoretical analysis and numerical simulation of acoustic waves in gas hydrate-bearing sediments
Lin Liu(刘琳), Xiu-Mei Zhang(张秀梅), and Xiu-Ming Wang(王秀明). Chin. Phys. B, 2021, 30(2): 024301.
[4] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[5] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[6] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
[7] Thermal stability, crystallization, and magnetic properties of FeNiBCuNb alloys
Zhe Chen(陈哲), Qian-Ke Zhu(朱乾科), Shu-Ling Zhang(张树玲), Ke-Wei Zhang(张克维), Yong Jiang(姜勇). Chin. Phys. B, 2019, 28(8): 087502.
[8] Regulating element distribution to improve magnetic properties of sintered Nd-Fe-B/Tb-Fe-B composite magnets
Zhu-Bai Li(李柱柏), Jing-Yan Zuo(左敬燕), Dong-Shan Wang(王东山), Fei Liu(刘飞), Xue-Feng Zhang(张雪峰). Chin. Phys. B, 2019, 28(7): 077503.
[9] Coercivity mechanisms in nanostructured permanent magnets
G P Zhao(赵国平), L Zhao(赵莉), L C Shen(沈来川), J Zou(邹静), L Qiu(邱雷). Chin. Phys. B, 2019, 28(7): 077505.
[10] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[11] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[12] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[13] Depolarization field in relaxor-based ferroelectric single crystals under one-cycle bipolar pulse drive
Chuan-Wen Chen(陈传文), Yang Xiang(项阳), Li-Guo Tang(汤立国), Lian Cui(崔莲), Bao-Qing Lin(林宝卿), Wei-Dong Du(杜伟东), Wen-Wu Cao(曹文武). Chin. Phys. B, 2019, 28(12): 127702.
[14] Configuration interaction calculations on the spectroscopic and transition properties of magnesium chloride
Dong-lan Wu(伍冬兰), Cheng-quan Lin(林成泉), Yu-feng Wen(温玉锋), An-dong Xie(谢安东), Bing Yan(闫冰). Chin. Phys. B, 2018, 27(8): 083101.
[15] Another look at the moist baroclinic Ertel-Rossby invariant with mass forcing
Shuai Yang(杨帅), Shou-Ting Gao(高守亭), Bin Chen(陈斌). Chin. Phys. B, 2018, 27(2): 029201.
No Suggested Reading articles found!