Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(7): 070304    DOI: 10.1088/1674-1056/27/7/070304
GENERAL Prev   Next  

Phase precision of Mach-Zehnder interferometer in PM2.5 air pollution

Duan Xie(谢端), Haifeng Chen(陈海峰)
School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
Abstract  This paper theoretically explores the effect of PM2.5 air pollution on the phase precision of a Mach-Zehnder interferometer. With the increasing of PM2.5 concentration, phase precision for inputs of coherent state & vacuum state and inputs of coherent state & squeezed vacuum state will gradually decrease and be lower than the standard quantum limit. When the value of relative humidity is increasing, the precision of two input cases is decreasing much faster. We also find that the precision for inputs of coherent state & squeezed state is better than that of coherent state & vacuum state when PM2.5 concentration is lower. As PM2.5 concentration increases, the precision for inputs of coherent state & squeezed state decreases faster, and then the two precisions tend to be the same while the concentration is higher.
Keywords:  Mach-Zehnder interferometer      PM2.5      phase precision  
Received:  06 December 2017      Revised:  10 April 2018      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61306131) and the Science Foundation of Shaanxi Provincial Department of Education, China (Grant No. 14JK1682).

Cite this article: 

Duan Xie(谢端), Haifeng Chen(陈海峰) Phase precision of Mach-Zehnder interferometer in PM2.5 air pollution 2018 Chin. Phys. B 27 070304

[1] Lang M D and Caves C M 2014 Phys. Rev. A 90 025802
[2] Haine S A 2013 Phys. Rev. Lett. 110 053002
[3] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[4] Caves C M 1981 Phys. Rev. D 23 1693
[5] Paris M G A 1995 Phys. Lett. A 201 132
[6] Aasi J, Abadie J, Abbott B P, et al. 2013 Nat. Photon. 7 613
[7] Grote H, Danzmann K, Dooley K L, Schnabel R, Slutsky J and Vahlbruch H 2013 Phys. Rev. Lett. 110 181101
[8] The L I G O Scientific Collaboration, Abadie J, Abbott B P, et al. 2011 Nat. Phys. 7 962
[9] Ono T, Chesterking J S, Cable H, Brien J L O and Matthews J C F 2017 New J. Phys. 19 053005
[10] Brask J B, Chaves R and Kołodyński J 2015 Phys. Rev. X 5 031010
[11] Israel Y, Rosen S and Silberberg Y 2014 Phys. Rev. Lett. 112 103604
[12] Zhou Z Y, Liu S L, Liu S K, Li Y H, Ding D S, Guo G C and Shi B S 2017 Phys. Rev. Appl. 7 064025
[13] Joo J, Park K, Jeong H, Munro W J, Nemoto K and Spiller T P 2012 Phys. Rev. A 86 043828
[14] Joo J, Munro W J and Spiller T P 2011 Phys. Rev. Lett. 107 083601
[15] Hu D and Jiang J Y 2013 J. Environ. Prot. 4 746
[16] Deng X J, Tie X X, Wu D, Zhou X J, Bi X Y, Tan H B, Li F and Jiang C L 2008 Atmos. Environ. 42 1424
[17] Watson J G, Chow J C, Green H M, Frank N and Pitchford M 1998 Guidance for Using Continuous Monitors in PM2.5 Monitoring Networks (U.S. Environmental Protection Agency) pp. 3-18
[18] Matsuoka F, Tomita A and Okamoto A 2016 Phys. Rev. A 93 032308
[19] Dinani H T and Berry D W 2014 Phys. Rev. A 90 023856
[20] Zhang Y M, Li X W, Yang W and Jin G R 2013 Phys. Rev. A 88 043832
[21] Israel Y, Afek I, Rosen S, Ambar O and Silberberg Y 2012 Phys. Rev. A 85 022115
[22] Xiang G Y, Hofmann H F and Pryde G J 2013 Sci. Rep. 3 2684
[23] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
[24] Nielsen M A and Chuang I L 2011 Quantum Compution Quantum Information:10th Anniversary Edition (Cambridge:Cambridge University Press) p. 360
[25] Shankar R 1994 Principles Quantim Mechanics (New York:Plenum Press) p. 272
[26] Stockton J K, Geremia J M, Doherty A C and Mabuchi H 2003 Phys. Rev. A 67 022112
[27] Sisler J F and Malm W C 2000 J. Air Waste Manage. 50 775
[28] Wang Q, Bi X H, Zhang Y F, Yang C J, Hong S M, Li J and Feng Y C 2012 Chin. Environ. Sci. 32 10 (in Chinese)
[29] Cheung H C, Wang T, Baumann K and Guo H 2005 Atmos. Environ. 39 6568
[30] Zhang Q, Zheng X Y, Feng Y C, Zhang Y F, Hong S M, Shen J D, Wang J, Ding J, Ren H and Jiao L 2016 Environ. Pollut. Control. 38 71 (in Chinese)
[31] Malm W C and Derek E D 2001 Atmos. Environ. 5 2845
[32] Hughes S W and Cowley M 2016 Eur. J. Phys. 37 015601
[33] Shang Q, Li Z H, Yang J and Pu M J 2011 Environ. Sci. 32 2750 (in Chinese)
[1] Near 100% spectral-purity photons from reconfigurable micro-rings
Pingyu Zhu(朱枰谕), Yingwen Liu(刘英文), Chao Wu(吴超), Shichuan Xue(薛诗川), Xinyao Yu(于馨瑶), Qilin Zheng(郑骑林), Yang Wang(王洋), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2020, 29(11): 114201.
[2] Fringe visibility and distinguishability in two-path interferometer with an asymmetric beam splitter
Yanjun Liu(刘彦军), Jing Lu(卢竞), Zhihui Peng(彭智慧), Lan Zhou(周兰), Dongning Zheng(郑东宁). Chin. Phys. B, 2019, 28(3): 030303.
[3] Characterize and optimize the four-wave mixing in dual-interferometer coupled silicon microrings
Chao Wu(吴超), Yingwen Liu(刘英文), Xiaowen Gu(顾晓文), Shichuan Xue(薛诗川), Xinxin Yu(郁鑫鑫), Yuechan Kong(孔月婵), Xiaogang Qiang(强晓刚), Junjie Wu(吴俊杰), Zhihong Zhu(朱志宏), Ping Xu(徐平). Chin. Phys. B, 2019, 28(10): 104211.
[4] Temperature-induced effect on refractive index of graphene based on coated in-fiber Mach-Zehnder interferometer
Li-Jun Li(李丽君), Shun-Shun Gong(宫顺顺), Yi-Lin Liu(刘仪琳), Lin Xu(徐琳), Wen-Xian Li(李文宪), Qian Ma(马茜), Xiao-Zhe Ding(丁小哲), Xiao-Li Guo(郭晓丽). Chin. Phys. B, 2017, 26(11): 116504.
[5] Using a Mach–Zehnder interferometer to deduce nitrogen density mapping
F. Boudaoud, M. Lemerini. Chin. Phys. B, 2015, 24(7): 075205.
[6] Compact temperature-insensitive modulator based on silicon microring assistant Mach–Zehnder interferometer
Zhang Xue-Jian, Feng Xue, Zhang Deng-Ke, Huang Yi-Dong. Chin. Phys. B, 2012, 21(12): 124203.
No Suggested Reading articles found!