Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(5): 054401    DOI: 10.1088/1674-1056/27/5/054401
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera

Guannan Liu(刘冠楠)1,2, Dong Liu(刘冬)1,2
1 MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Advanced Combustion Laboratory, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  

This paper presents a numerical study on the simultaneous reconstruction of temperature and volume fraction fields of soot and metal-oxide nanoparticles in an axisymmetric nanofluid fuel sooting flame based on the radiative energy images captured by a charge-coupled device (CCD) camera. The least squares QR decomposition method was introduced to deal with the reconstruction inverse problem. The effects of ray numbers and measurement errors on the reconstruction accuracy were investigated. It was found that the reconstruction accuracies for volume fraction fields of soot and metal-oxide nanoparticles were easily affected by the measurement errors for radiation intensity, whereas only the metal-oxide volume fraction field reconstruction was more sensitive to the measurement error for the volume fraction ratio of metal-oxide nanoparticles to soot. The results show that the temperature, soot volume fraction, and metal-oxide nanoparticles volume fraction fields can be simultaneously and accurately retrieved for exact and noisy data using a single CCD camera.

Keywords:  simultaneous reconstruction      temperature distribution      soot and metal-oxide volume fraction      nanofluid fuel flame  
Received:  09 October 2017      Revised:  28 December 2017      Accepted manuscript online: 
PACS:  44.40.+a (Thermal radiation)  
  44.05.+e (Analytical and numerical techniques)  
  02.30.Zz (Inverse problems)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No.51576100) and the Project of "Six Talent Summit" of Jiangsu Province,China (Grant No.2014-XNY-002).

Corresponding Authors:  Dong Liu     E-mail:  dongliu@njust.edu.cn

Cite this article: 

Guannan Liu(刘冠楠), Dong Liu(刘冬) Reconstruction model for temperature and concentration profiles of soot and metal-oxide nanoparticles in a nanofluid fuel flame by using a CCD camera 2018 Chin. Phys. B 27 054401

[12] Xuan Y M and Li Q 2003 J. Heat Transf. 125 151
[1] Basu S and Miglani A 2016 Int. J. Heat Mass Transf. 96 482
[13] Xuan Y M and Li Q 2000 Int. J. Heat Fluid Flow 21 58
[2] Choi S U S 2009 J. Heat Transfer 131 033106
[14] Xing J J, Wu Z H, Xie H Q, Wang Y Y, Li Y H and Mao J H 2017 Chin. Phys. B 26 104401
[3] Jones M, Li C H, Afjeh A and Peterson G 2011 Nanoscale Res. Lett. 6 246
[15] Zhou X F and Gao L 2007 Chin. Phys. 16 2028
[4] Wen D S 2010 Energy Environ. Sci. 3 591
[16] Hayat T, Imtiaz M, Alsaedi A and and Mansoor R 2014 Chin. Phys. B 23 054701
[5] Javed I, Baek S W and Waheed K 2015 Combust. Flame 162 191
[17] Gan Y N and Qiao L 2011 Combust. Flame 158 354
[6] Javed I, Baek S W and Waheed K 2015 Combust. Flame 162 774
[18] Gan Y N, Lim Y S and Qiao L 2012 Combust. Flame 159 1732
[7] Sabourin J L, Dabbs D M, Yetter R A, Dryer F L and Aksay I A 2009 Acs Nano 3 3945
[19] Tanvir S and Qiao L 2016 Combust. Flame 166 34
[8] Huang X F and Li S J 2016 Fuel 177 113
[20] Liu G N and Liu D 2017 Sci. China Technol. Sci. 60 1075
[9] Selvan V A M, Anand R B and Udayakumar M 2014 Fuel 130 160
[21] Zhou H C, Han S D, Sheng F and Zheng C G 2002 J. Quant. Spectrosc. Radiat. Transf. 72 361
[10] Sarvestany N S, Farzad A, Bajestan E E and Mir M 2014 J. Dispers. Sci. Technol. 35 1745
[22] Snelling D R, Thomson K A, Smallwood G J, Gülder O L, Weckman E J and Fraser R A 2002 AIAA J. 40 1789
[11] Xuan Y M, Li Q and Hu W 2003 AICHE J. 49 1038
[23] Brisley P M, Lu G, Yan Y and Cornwell S 2005 IEEE Trans. Instrum. Meas. 54 1417
[12] Xuan Y M and Li Q 2003 J. Heat Transf. 125 151
[24] Lou C and Zhou H C 2005 Combust. Flame 143 97
[13] Xuan Y M and Li Q 2000 Int. J. Heat Fluid Flow 21 58
[25] Lu G, Yan Y, Cornwell S and Riley G 2006 Proc. IEEE 55 1658
[14] Xing J J, Wu Z H, Xie H Q, Wang Y Y, Li Y H and Mao J H 2017 Chin. Phys. B 26 104401
[26] Lou C, Zhou H C, Yu P F and Jiang Z W 2007 Proc. Combust. Inst. 31 2771
[15] Zhou X F and Gao L 2007 Chin. Phys. 16 2028
[27] Wang F, Liu D, Cen K F, Yan J H, Huang Q X and Chi Y 2008 J. Quant. Spectrosc. Radiat. Transf. 109 2171
[16] Hayat T, Imtiaz M, Alsaedi A and and Mansoor R 2014 Chin. Phys. B 23 054701
[28] Liu D, Wang F, Huang Q X, Yan J H, Chi Y and Cen K F 2008 Chin. Phys. B 17 1312
[17] Gan Y N and Qiao L 2011 Combust. Flame 158 354
[29] Liu D, Wang F, Huang Q X, Yan J H, Chi Y and Cen K F 2008 Acta Phys. Sin. 57 4812(in Chinese)
[18] Gan Y N, Lim Y S and Qiao L 2012 Combust. Flame 159 1732
[30] Liu D, Wang F, Cen K F, Yan J H, Huang Q X and Chi Y 2008 Opt. Lett. 33 422
[19] Tanvir S and Qiao L 2016 Combust. Flame 166 34
[31] Huang Q X, Wang F, Liu D, Ma Z Y, Yan J H, Chi Y and Cen C F 2009 Combust. Flame 156 565
[20] Liu G N and Liu D 2017 Sci. China Technol. Sci. 60 1075
[32] Liu D, Yan J H, Wang F, Huang Q X, Chi Y and Cen K F 2010 Int. J. Heat Mass Transf. 53 4474
[21] Zhou H C, Han S D, Sheng F and Zheng C G 2002 J. Quant. Spectrosc. Radiat. Transf. 72 361
[33] Liu D, Huang Q X, Wang F, Chi Y, Cen K F and Yan J H 2010 J. Heat Transfer 132 061202
[22] Snelling D R, Thomson K A, Smallwood G J, Gülder O L, Weckman E J and Fraser R A 2002 AIAA J. 40 1789
[34] Yan J H, Wang F, Huang Q X, Chi Y, Cen K F and Liu D 2011 Acta Phys. Sin. 60 060701(in Chinese)
[23] Brisley P M, Lu G, Yan Y and Cornwell S 2005 IEEE Trans. Instrum. Meas. 54 1417
[35] Liu D, Yan J H and Cen K F 2011 Int. J. Heat Mass Transf. 54 1684
[24] Lou C and Zhou H C 2005 Combust. Flame 143 97
[36] Liu D, Yan J H and Cen K F 2012 Int. J. Heat Mass Transf. 55 1553
[25] Lu G, Yan Y, Cornwell S and Riley G 2006 Proc. IEEE 55 1658
[37] Liu D, Yan J H, Wang F, Huang Q X, Chi Y and Cen K F 2012 Fuel 93 397
[26] Lou C, Zhou H C, Yu P F and Jiang Z W 2007 Proc. Combust. Inst. 31 2771
[38] Niu C Y, Qi H, Huang X, Ruan L M, Wang W and Tan H P 2015 Chin. Phys. B 24 114401
[27] Wang F, Liu D, Cen K F, Yan J H, Huang Q X and Chi Y 2008 J. Quant. Spectrosc. Radiat. Transf. 109 2171
[39] Niu C Y, Qi H, Lew Z Y, Ruan L M and Tan H P 2015 3nd International Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control, October 16-19, Taipei, Taiwan, China
[28] Liu D, Wang F, Huang Q X, Yan J H, Chi Y and Cen K F 2008 Chin. Phys. B 17 1312
[40] Ni M J, Zhang H D, Wang F, Xie Z C, Huang Q X, Yan J H and Cen K F 2016 Appl. Therm. Eng. 96 421
[29] Liu D, Wang F, Huang Q X, Yan J H, Chi Y and Cen K F 2008 Acta Phys. Sin. 57 4812(in Chinese)
[41] Sun J, Xu C L, Zhang B, Wang S M, Hossain M M, Qi H and Tan H P 2016 Instrum. Meas. Technol. Conf. Proc. 1-6
[30] Liu D, Wang F, Cen K F, Yan J H, Huang Q X and Chi Y 2008 Opt. Lett. 33 422
[42] Liu D 2016 Therm. Sci. 20 493
[31] Huang Q X, Wang F, Liu D, Ma Z Y, Yan J H, Chi Y and Cen C F 2009 Combust. Flame 156 565
[43] Xu C L, Zhao W C, Hu J H, Zhang B and Wang S M 2017 Fuel 196 550
[32] Liu D, Yan J H, Wang F, Huang Q X, Chi Y and Cen K F 2010 Int. J. Heat Mass Transf. 53 4474
[44] Niu C Y, Qi H, Huang X, Ruan L M and Tan H P 2016 J. Quant. Spectrosc. Radiat. Transf. 184 44
[33] Liu D, Huang Q X, Wang F, Chi Y, Cen K F and Yan J H 2010 J. Heat Transfer 132 061202
[45] Huang X, Qi H, Niu C Y, Ruan L M, Tan H P, Sun J and Xu C L 2017 Appl. Therm. Eng. 115 1337
[34] Yan J H, Wang F, Huang Q X, Chi Y, Cen K F and Liu D 2011 Acta Phys. Sin. 60 060701(in Chinese)
[46] Zhou H C, Luo C and Lu J 2008 The 6th International Symposium on Measurement Techniques for Multiphase Flows, December 15-17, 2008, Okinawa, Japan, p. 012086
[35] Liu D, Yan J H and Cen K F 2011 Int. J. Heat Mass Transf. 54 1684
[47] Yan W J, Zheng S and Zhou H C 2017 Appl. Therm. Eng. 124 1014
[36] Liu D, Yan J H and Cen K F 2012 Int. J. Heat Mass Transf. 55 1553
[48] Modest M F 2003 Radiative Heat Transfer, 2nd edn. (America:Academic Press) pp. 361-412
[37] Liu D, Yan J H, Wang F, Huang Q X, Chi Y and Cen K F 2012 Fuel 93 397
[49] Querry M R 1985 Optical Constants p. 12
[38] Niu C Y, Qi H, Huang X, Ruan L M, Wang W and Tan H P 2015 Chin. Phys. B 24 114401
[50] Chang H and Charalampopoulos T T 1990 Proc. R. Soc. A 430 577
[39] Niu C Y, Qi H, Lew Z Y, Ruan L M and Tan H P 2015 3nd International Workshop on Heat Transfer Advances for Energy Conservation and Pollution Control, October 16-19, Taipei, Taiwan, China
[51] Lanczons C 1950 J. Res. Natl. Bur. Stand. 45 255
[40] Ni M J, Zhang H D, Wang F, Xie Z C, Huang Q X, Yan J H and Cen K F 2016 Appl. Therm. Eng. 96 421
[52] Paige C C and Saunders M A 1982 AMC Trans. Math. Softw. 8 43
[41] Sun J, Xu C L, Zhang B, Wang S M, Hossain M M, Qi H and Tan H P 2016 Instrum. Meas. Technol. Conf. Proc. 1-6
[53] Paige C C and Saunders M A 1982 AMC Trans. Math. Softw. 8 195
[42] Liu D 2016 Therm. Sci. 20 493
[54] Köylü Ü Ö, McEnally C S, Rosner D E and Pfefferle L D 1997 Combust. Flame 110 494
[43] Xu C L, Zhao W C, Hu J H, Zhang B and Wang S M 2017 Fuel 196 550
[55] Xu Z W, Zhao H B, Chen X B and Lou C 2017 Combust. Flame 180 158
[44] Niu C Y, Qi H, Huang X, Ruan L M and Tan H P 2016 J. Quant. Spectrosc. Radiat. Transf. 184 44
[56] Xu Z W and Zhao H B 2015 Combust. Flame 162 2200
[45] Huang X, Qi H, Niu C Y, Ruan L M, Tan H P, Sun J and Xu C L 2017 Appl. Therm. Eng. 115 1337
[46] Zhou H C, Luo C and Lu J 2008 The 6th International Symposium on Measurement Techniques for Multiphase Flows, December 15-17, 2008, Okinawa, Japan, p. 012086
[47] Yan W J, Zheng S and Zhou H C 2017 Appl. Therm. Eng. 124 1014
[48] Modest M F 2003 Radiative Heat Transfer, 2nd edn. (America:Academic Press) pp. 361-412
[49] Querry M R 1985 Optical Constants p. 12
[50] Chang H and Charalampopoulos T T 1990 Proc. R. Soc. A 430 577
[51] Lanczons C 1950 J. Res. Natl. Bur. Stand. 45 255
[52] Paige C C and Saunders M A 1982 AMC Trans. Math. Softw. 8 43
[53] Paige C C and Saunders M A 1982 AMC Trans. Math. Softw. 8 195
[54] Köylü Ü Ö, McEnally C S, Rosner D E and Pfefferle L D 1997 Combust. Flame 110 494
[55] Xu Z W, Zhao H B, Chen X B and Lou C 2017 Combust. Flame 180 158
[56] Xu Z W and Zhao H B 2015 Combust. Flame 162 2200
[1] Noise temperature distribution of superconducting hot electron bolometer mixers
Kang-Min Zhou(周康敏), Wei Miao(缪巍), Yue Geng(耿悦), Yan Delorme, Wen Zhang(张文), Yuan Ren(任远), Kun Zhang(张坤), Sheng-Cai Shi(史生才). Chin. Phys. B, 2020, 29(5): 058505.
[2] Flow characteristics of supersonic gas passing through a circular micro-channel under different inflow conditions
Guang-Ming Guo(郭广明), Qin Luo(罗琴), Lin Zhu(朱林), Yi-Xiang Bian(边义祥). Chin. Phys. B, 2019, 28(6): 064702.
[3] Thermal analysis of GaN-based laser diode mini-array
Jun-Jie Hu(胡俊杰), Shu-Ming Zhang(张书明), De-Yao Li(李德尧), Feng Zhang(张峰), Mei-Xin Feng(冯美鑫), Peng-Yan Wen(温鹏雁), Jian-Pin Liu(刘建平), Li-Qun Zhang(张立群), Hui Yang(杨辉). Chin. Phys. B, 2018, 27(9): 094208.
[4] Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure
Zhen Yang(杨臻), Hui-Min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Kang Wang(王康). Chin. Phys. B, 2018, 27(8): 085205.
[5] Efficient thermal analysis method for large scale compound semiconductor integrated circuits based on heterojunction bipolar transistor
Shi-Zheng Yang(杨施政), Hong-Liang Lv(吕红亮), Yu-Ming Zhang(张玉明), Yi-Men Zhang(张义门), Bin Lu(芦宾), Si-Lu Yan(严思璐). Chin. Phys. B, 2018, 27(10): 108101.
[6] Two-dimensional thermal illusion device with arbitrary shape based on complementary media
Ge Xia(夏舸), Wei Kou(寇蔚), Li Yang(杨立), Yong-Cheng Du(杜永成). Chin. Phys. B, 2017, 26(10): 104403.
[7] Simulation on effect of metal/graphene hybrid transparent electrode on characteristics of GaN light emitting diodes
Ming-Can Qian(钱明灿), Shu-Fang Zhang(张淑芳), Hai-Jun Luo(罗海军), Xing-Ming Long(龙兴明), Fang Wu(吴芳), Liang Fang(方亮), Da-Peng Wei(魏大鹏), Fan-Ming Meng(孟凡明), Bao-Shan Hu(胡宝山). Chin. Phys. B, 2017, 26(10): 104402.
[8] Thermal and induced flow characteristics of radio frequency surface dielectric barrier discharge plasma actuation at atmospheric pressure
Wei-long Wang(王蔚龙), Jun Li(李军), Hui-min Song(宋慧敏), Di Jin(金迪), Min Jia(贾敏), Yun Wu(吴云). Chin. Phys. B, 2017, 26(1): 015205.
[9] An RLC interconnect analyzable crosstalk model considering self-heating effect
Zhu Zhang-Ming(朱樟明) and Liu Shu-Bin(刘术彬) . Chin. Phys. B, 2012, 21(2): 028401.
[10] Determination of temperature distribution and control parameter in a two-dimensional parabolic inverse problem with overspecified data
Li Fu-Le(李福乐) and Zhang Hong-Qian(张洪谦) . Chin. Phys. B, 2011, 20(10): 100201.
[11] A novel analytical thermal model for multilevel nano-scale interconnects considering the via effect
Zhu Zhang-Ming(朱樟明),Li Ru(李儒), Hao Bao-Tian(郝报田), and Yang Yin-Tang(杨银堂) . Chin. Phys. B, 2009, 18(11): 4995-5000.
[12] Simulation study on reconstruction model of three-dimensional temperature distribution within visible range in furnace
Liu Dong(刘冬), Wang Fei(王飞), Huang Qun-Xing(黄群星), Yan Jian-Hua(严建华), Chi Yong(池涌), and Cen Ke-Fa(岑可法). Chin. Phys. B, 2008, 17(4): 1312-1317.
[13] Calculation of the heat deposition and temperature distribution of the target bombarded by high-energy protons using Monte Carlo simulation and finite element method
Yin Wen (殷雯), Zhang Guo-Feng (张国锋), Du Jian-Hong (杜建红), Liang Jiu-Qing (梁九卿). Chin. Phys. B, 2003, 12(12): 1383-1385.
No Suggested Reading articles found!