Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 026501    DOI: 10.1088/1674-1056/27/2/026501

Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes

Kui-Kui Zhou(周魁葵)1,2, Ning Xu(徐 宁)1,2, Guo-Feng Xie(谢国锋)1
1. Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China;
2. Deparment of Physics, Yancheng Institute of Technology, Yancheng 224051, China
Abstract  We use molecular dynamics simulation to calculate the thermal conductivities of (5, 5) carbon nanotube superlattices (CNTSLs) and defective carbon nanotubes (DCNTs), where CNTSLs and DCNTs have the same size. It is found that the thermal conductivity of DCNT is lower than that of CNTSL at the same concentration of Stone-Wales (SW) defects. We perform the analysis of heat current autocorrelation functions and observe the phonon coherent resonance in CNTSLs, but do not observe the same effect in DCNTs. The phonon vibrational eigen-mode analysis reveals that all modes of phonons are strongly localized by SW defects. The degree of localization of CNTSLs is lower than that of DCNTs, because the phonon coherent resonance results in the phonon tunneling effect in the longitudinal phonon mode. The results are helpful in understanding and tuning the thermal conductivity of carbon nanotubes by defect engineering.
Keywords:  thermal conductivity      carbon nanotube superlattices      defective carbon nanotubes      phonon coherent resonance  
Received:  26 September 2017      Revised:  08 November 2017      Accepted manuscript online: 
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404278 and 11275163) and the Science Foundation of Hunan Province, China (Grant No. 2016JJ2131).
Corresponding Authors:  Ning Xu, Guo-Feng Xie     E-mail:;
About author:  65.80.-g; 63.22.-m

Cite this article: 

Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋) Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes 2018 Chin. Phys. B 27 026501

[1] Iijima S 1991 Nature 354 56
[2] De Volder M F, Tawfick S H, Baughman R H and Hart A J 2013 Science 339 535
[3] Javey A, Qi P, Wang Q and Dai H 2004 Proc. Natl. Acad. Sci. USA 101 13408
[4] Pop E, Mann D, Wang Q, Goodson K and Dai H 2006 Nano Lett. 6 96
[5] Deng F and Zheng Q S 2008 Appl. Phys. Lett. 92 071902
[6] Ujereh S, Fisher T and Mudawar I 2007 Int. J. Heat Mass Transfer 50 4023
[7] Cola B A, Xu X and Fisher T S 2007 Appl. Phys. Lett. 90 093513
[8] Zhang K, Chai Y, Yuen M M F, Xiao D G W and Chan P C H 2008 Nanotechnology 19 215706
[9] Balandin A A 2011 Nat. Mater. 10 569
[10] Sadeghi M M, Pettes M T and Shi L 2012 Solid State Commun. 152 1321
[11] Zhang G and Li B 2010 Nanoscale 2 1058
[12] Li N, Ren J, Wang L, Zhang G, H? nggi P and Li B 2012 Rev. Mod. Phys. 84 1045
[13] Marconnet A M, Panzer M A and Goodson K E 2013 Rev. Mod. Phys. 85 1295
[14] Yang N, Xu X, Zhang G and Li B 2012 AIP Adv. 2 041410
[15] Zhan H, Zhang Y, Bell J M, Mai Y-W and Gu Y 2014 Carbon 77 416
[16] Maruyama S 2002 Physica B 323 193
[17] Zhang G and Li B 2005 J. Chem. Phys. 123 114714
[18] Chang C W, Okawa D, Garcia H, Majumdar A and Zettl A 2008 Phys. Rev. Lett. 101 075903
[19] Pan R Q, Xu Z J, and Dai C X 2014 Chin. Phys. Lett. 31 16501
[20] Che J, Cagin T and Goddard Ⅲ W A 2000 Nanotechnology 11 65
[21] Kondo N, Yamamoto T and Watanabe K 2006 e-J. Surf. Sci. Nanotech. 4 239
[22] Feng D L, Feng Y H, Chen Y, Li W and Zhang X X 2013 Chin. Phys. B 22 016501
[23] Li W, Feng Y H, Peng J and Zhang X X 2012 J. Heat Transfer 134 092401
[24] Xie G F, Shen Y L, Wei X L, Yang L W, Xiao H P, Zhong J X and Zhang G 2014 Sci. Rep. 4 5085
[25] Wang Y C, Zhang K W and Xie G F 2016 Appl. Surf. Sci. 360 107
[26] Xie G F, Guo Y, Wei X L, Zhang K W, Sun L Z, Zhong J X, Zhang G and Zhang Y W 2014 Appl. Phys. Lett. 104 233901
[27] Li W, Feng Y H, Chen Y, and Zhang X X 2012 Acta Phys. Sin. 61 136102(in Chinese)
[28] Xie G F, and Shen Y L 2015 Phys. Chem. Chem. Phys. 17 8822
[29] M"uller-Plathe F 1997 J. Chem. Phys. 106 6082
[30] Stuart S J, Tutein A B and Harrison J A 2000 J. Chem. Phys. 112 6472
[31] Brenner D W, Shenderova O A, Harrison J A, Stuart S J, Ni B and Sinnott S B 2002 J. Phys.:Condens. Matter 14 783
[32] Grujicic M, Cao G and Gersten B 2004 Matter Sci. Eng. B 107 204
[33] Ren C, Zhang W, Xu Z, Zhu Z and Huai P 2010 J. Phys. Chem. C 114 5786
[34] Xu Z and Buehler M J 2009 Nanotechnology 20 185701
[35] Wei N, Xu L, Wang H Q and Zheng J C 2011 Nanotechnology 22 105705
[36] Plimpton S 1995 J. Comput. Phys. 117 1
[37] Mizoguchi K, Matsutani K, Hase M, Nakashima S and Nakayama M 1998 Physica B 249 887
[38] Chen J, Zhang G and Li B 2011 J. Chem. Phys. 135 104508
[39] Che J, Çağin T, Deng W and Goddard W A 2000 J. Chem. Phys. 113 6888
[40] McGaughey A J H and Kaviany M 2004 Int. J. Heat Mass Transfer 47 1783
[41] Chen J, Zhang G and Li B 2010 Phys. Lett. A 374 2392
[42] Bodapati A, Schelling P K, Phillpot S R and Keblinski P 2006 Phys. Rev. B 74 245207
[43] Xie G F, Li B H, Yang L W, Cao J X, Guo Z X, Tang M H and Zhong J X 2013 J. Appl. Phys. 113 083501
[44] Schelling P K and Phillpot S R 2001 J. Am. Ceram. Soc. 84 2997
[45] Chen G 1999 J. Heat Transfer 121 945
[1] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[2] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[3] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[4] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[5] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[6] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[7] Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2020, 29(11): 118401.
[8] Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms
Shu-Sen Yang(杨树森), Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2019, 28(8): 086501.
[9] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
[10] Thermal conductivity characterization of ultra-thin silicon film using the ultra-fast transient hot strip method
Yan-Yan Zhang(张燕燕), Ran Cheng(程然), Dong Ni(倪东), Ming Tian(田明), Ji-Wu Lu(卢继武), Yi Zhao(赵毅). Chin. Phys. B, 2019, 28(7): 078105.
[11] Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance
Kang Liu(刘康), Jiwen Zhao(赵继文), Huarui Sun(孙华锐), Huaixin Guo(郭怀新), Bing Dai(代兵), Jiaqi Zhu(朱嘉琦). Chin. Phys. B, 2019, 28(6): 060701.
[12] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[13] Thermal conductivity of systems with a gap in the phonon spectrum
E Salamatov. Chin. Phys. B, 2018, 27(7): 076502.
[14] Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials
Alexandr I. Cocemasov, Calina I. Isacova, Denis L. Nika. Chin. Phys. B, 2018, 27(5): 056301.
[15] Synthesis and thermoelectric properties of Nd-single filled p-type skutterudites
Hong Wu(吴宏), Nusrat Shaheen, Heng-Quan Yang(杨恒全), Kun-Ling Peng(彭坤岭), Xing-Chen Shen(沈星辰), Guo-Yu Wang(王国玉), Xu Lu(卢旭), Xiao-Yuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047203.
No Suggested Reading articles found!