Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 124703    DOI: 10.1088/1674-1056/27/12/124703
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Drag reduction characteristics of heated spheres falling into water

Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学)
School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
Abstract  

We experimentally investigate the drag reduction characteristics of heated spheres falling into water by using a high-speed camera. In 25-℃ water, with the increase of the sphere temperature the average velocity increases to a maximum value at a temperature of 400℃ and then decreases until the temperature reaches 700℃, the average velocity will increase while the sphere temperature continually rises until the temperature reaches 900℃. The average and the maximum velocity of the heated sphere are larger than those of the room-temperature sphere. The flow separates at the rear of the heated sphere, leading to low pressure drag. The drag reduction effect of the stable film boiling is lower than that of the nucleate boiling. In the nucleate boiling regime, the average velocity decreases with the increase of water temperature, the drag of the sphere with gentle boiling intensity is smaller. The vapor layer formed in the stable film boiling regime can improve the stability of the fall trajectory. The intense turbulence caused by the nucleate boiling can make the sphere largely deviate from rectilinear motion.

Keywords:  drag reduction      boiling      bubbles      vapor layer  
Received:  13 July 2018      Revised:  29 August 2018      Accepted manuscript online: 
PACS:  47.55.dp (Cavitation and boiling)  
  47.54.De (Experimental aspects)  
  47.85.lb (Drag reduction)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11672094).

Corresponding Authors:  Ying-Jie Wei     E-mail:  weiyingjie@gmail.com

Cite this article: 

Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学) Drag reduction characteristics of heated spheres falling into water 2018 Chin. Phys. B 27 124703

[1] Yang S Q and Dou G 2010 J. Fluid Mech. 642 279
[2] Li F C, Wang L and Cai W H 2015 Chin. Phys. B 24 074701
[3] Guan X L, Wang W and Jiang N 2015 Acta Phys. Sin. 64 094703 (in Chinese)
[4] Elbing B R, Winkel E S, Lay K A, Ceccio S L, Dowling D R and Perlin M 2008 J. Fluid Mech. 612 201
[5] Qin S J, Chu N, Yao Y, Liu J T, Huang B and Wu D Z 2017 Phys. Fluids 29 037103
[6] Ceccio S L 2010 Ann. Rev. Fluid Mech. 42 183
[7] Wang B, Wang J D, Chen D R, Sun N and Wang T 2017 Chin. Phys. B 26 054701
[8] Rothstein J P 2010 Ann. Rev. Fluid Mech. 42 89
[9] Mchale G, Newton M I and Shirtcliffe N J 2010 Soft Mater. 6 714
[10] Jetly A, Vakarelski I U, Thoroddsen and S T 2018 Soft Matter 14 1608
[11] Bradfield W S, Barkdoll R O, Byrne J T 1962 Int. Heat Mass Transfer 5 615
[12] Quéré D 2013 Ann. Rev. Fluid Mech. 45 197
[13] Saranadhi D, Chen D Y, Kleingartner J A, Srinivasan S, Cohen R E and Mckinley C H 2016 Sci. Adv. 2 e1600686
[14] Hof B 2017 Nature 541 161
[15] Zvirin Y, Hewitt G R and Kenning D B R 1990 Exp. Heat Transfer 3 185
[16] Gylys J, Skvorcinskiene R, Paukstaitis L, Gylys M and Adomavicius A A 2015 Int. Heat Mass Transfer 89 913
[17] Vakarelski I U, Marston J O, Chan D Y C and Thoroddsen S T 2011 Phys. Rev. Lett. 106 214501
[18] Vakarelski I U, Chan D Y C and Thoroddsen S T 2014 Soft Matter 10 5662
[19] Vakarelski I U, Berry J D and Chan D Y C 2016 Phys. Rev. Lett. 117 114503
[20] Berry J D, Vakarelski I U, Chan D Y C and Thoroddsen S T 2017 Phys. Fluids 29 107104
[21] Yagov V V, Lexin M A, Zabirov A R and Kaban'kov O N 2016 Int. Heat Mass Transfer 100 98
[22] Lyotard N, Shew W L, Bocquet L and Pinton J F 2007 Eur. Phys. J. B 60 469
[23] Achenbach E 1972 J. Fluid Mech. 54 565
[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Hydrodynamic metamaterials for flow manipulation: Functions and prospects
Bin Wang(王斌) and Jiping Huang (黄吉平). Chin. Phys. B, 2022, 31(9): 098101.
[4] Effects of single synthetic jet on turbulent boundary layer
Jin-Hao Zhang(张津浩), Biao-Hui Li(李彪辉), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(7): 074702.
[5] Current-driven dynamics of skyrmion bubbles in achiral uniaxial magnets
Yaodong Wu(吴耀东), Jialiang Jiang(蒋佳良), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(7): 077504.
[6] Accurate prediction of the critical heat flux for pool boiling on the heater substrate
Fengxun Hai(海丰勋), Wei Zhu(祝薇), Xiaoyi Yang(杨晓奕), and Yuan Deng(邓元). Chin. Phys. B, 2022, 31(6): 064401.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Experimental investigation on drag reduction in a turbulent boundary layer with a submerged synthetic jet
Biao-Hui Li(李彪辉), Kang-Jun Wang(王康俊), Yu-Fei Wang(王宇飞), and Nan Jiang(姜楠). Chin. Phys. B, 2022, 31(2): 024702.
[9] Enrichment of microplastic pollution by micro-nanobubbles
Jing Wang(王菁), Zihan Wang(王子菡), Fangyuan Pei(裴芳源), and Xingya Wang(王兴亚). Chin. Phys. B, 2022, 31(11): 118104.
[10] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[11] Comparison of helium bubble formation in F82H, ODS, SIMP and T91 steels irradiated by Fe and He ions simultaneously
Bingsheng Li(李炳生), Zhen Yang(杨振), Shuai Xu(徐帅), Kongfang Wei (魏孔芳), Zhiguang Wang(王志光), Tielong Shen(申铁龙), Tongmin Zhang(张桐民), and Qing Liao(廖庆). Chin. Phys. B, 2021, 30(3): 036102.
[12] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[13] Cavity formation during water entry of heated spheres
Jia-Chuan Li(李佳川), Ying-Jie Wei(魏英杰), Cong Wang(王聪), Wei-Xue Xia(夏维学). Chin. Phys. B, 2018, 27(9): 094703.
[14] The properties of surface nanobubbles formed on different substrates
Zheng-Lei Zou(邹正磊), Nan-Nan Quan(权楠楠), Xing-Ya Wang(王兴亚), Shuo Wang(王硕), Li-Min Zhou(周利民), Jun Hu(胡钧), Li-Juan Zhang(张立娟), Ya-Ming Dong(董亚明). Chin. Phys. B, 2018, 27(8): 086803.
[15] Interaction between encapsulated microbubbles: A finite element modelling study
Chen-Liang Cai(蔡晨亮), Jie Yu(于洁), Juan Tu(屠娟), Xia-Sheng Guo(郭霞生), Pin-Tong Huang(黄品同), Dong Zhang(章东). Chin. Phys. B, 2018, 27(8): 084302.
No Suggested Reading articles found!