Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118502    DOI: 10.1088/1674-1056/27/11/118502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Impact of variations of threshold voltage and hold voltage of threshold switching selectors in 1S1R crossbar array

Yu-Jia Li(李雨佳)1,2, Hua-Qiang Wu(吴华强)2, Bin Gao(高滨)2, Qi-Lin Hua(化麒麟)2, Zhao Zhang(张昭)1, Wan-Rong Zhang(张万荣)1, He Qian(钱鹤)2
1 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
2 Institute of Microelectronics, Tsinghua University, Beijing 100084, China
Abstract  

The impact of the variations of threshold voltage (Vth) and hold voltage (Vhold) of threshold switching (TS) selector in 1S1R crossbar array is investigated. Based on ON/OFF state I-V curves measurements from a large number of Ag-filament TS selectors, Vth and Vhold are extracted and their variations distribution expressions are obtained, which are then employed to evaluate the impact on read process and write process in 32×32 1S1R crossbar array under different bias schemes. The results indicate that Vth and Vhold variations of TS selector can lead to degradation of 1S1R array performance parameters, such as minimum read/write voltage, bit error rate (BER), and power consumption. For the read process, a small Vhold variation not only results in the minimum read voltage increasing but it also leads to serious degradation of BER. As the standard deviation of Vhold and Vth increases, the BER and the power consumption of 1S1R crossbar array under 1/2 bias, 1/3 bias, and floating scheme degrade, and the case under 1/2 bias tends to be more serious compared with other two schemes. For the write process, the minimum write voltage also increases with the variation of Vhold from small to large value. A slight increase of Vth standard deviation not only decreases write power efficiency markedly but also increases write power consumption. These results have reference significance to understand the voltage variation impacts and design of selector properly.

Keywords:  RRAM      threshold switching selector      crossbar array      variation  
Received:  09 July 2018      Revised:  01 August 2018      Accepted manuscript online: 
PACS:  85.30.-z (Semiconductor devices)  
  85.40.-e (Microelectronics: LSI, VLSI, ULSI; integrated circuit fabrication technology)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
Fund: 

Project supported by the MOST of China (Grant No. 2016YFA0201801), the Beijing Advanced Innovation Center for Future Chip (ICFC), Beijing Municipal Science and Technology Project (Grant No. D161100001716002), and the National Natural Science Foundation of China (Grant Nos. 61674089, 61674087, 61674092, 61076115, and 61774012), and the Research Fund from Beijing Innovation Center for Future Chip (Grant No. KYJJ2016008).

Corresponding Authors:  Hua-Qiang Wu, Wan-Rong Zhang     E-mail:  wuhq@tsinghua.edu.cn;wrzhang@bjut.edu.cn

Cite this article: 

Yu-Jia Li(李雨佳), Hua-Qiang Wu(吴华强), Bin Gao(高滨), Qi-Lin Hua(化麒麟), Zhao Zhang(张昭), Wan-Rong Zhang(张万荣), He Qian(钱鹤) Impact of variations of threshold voltage and hold voltage of threshold switching selectors in 1S1R crossbar array 2018 Chin. Phys. B 27 118502

[1] Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T and Tasi M J 2012 P. IEEE 100 1951
[2] Wu H Q, Wu M H, Li X Y, Bai Y, Deng N, Yu Z P and Qian H 2015 Chin. Phys. B 24 058501
[3] Wang X F, Zhao H M, Yang Y and Ren T L 2017 Chin. Phys. B 26 038501
[4] Zhu D, Li Y, Shen W, Zhou Z, Liu L and Zhang X 2017 J. Semicond. 38 071002
[5] Linn E, Rosezin R, Kügeler C and Waser R 2010 Nat. Mater. 9 403
[6] Pan F, Gao S, Chen C, Song C and Zeng F 2014 Mat. Sci. Eng. R 83 1
[7] Burr G W, Shenoy R S, Virwani K, Narayanan P, Padilla A, Kurdi B and Hwang H 2014 J. Vac. Sci. Technol. B 32 040802
[8] Aluguri R and Tseng T Y 2016 IEEE J. Electron. Devi. 4 294
[9] Song J, Woo J, Prakash A, Lee D and Hwang H 2015 IEEE Electr. Device L. 36 681
[10] Peng X, Madler R, Chen P Y and Yu S 2017 J. Comput. Electron. 16 1
[11] Zhang L, Cosemans S, Wouters D J, Groeseneken G, Jurczak M and Govoreanu B 2015 IEEE T. Electron. Dev. 62 3250
[12] Song B, Xu H, Liu H and Li Q 2017 Appl. Phys. A 123 356
[13] Hua Q H, Wu H Q, Gao B and Qian H 2018 International Symppsium on VLSI Technology, System Application, April 16-19, 2018, Hsinchu, China 17896275
[1] Resistive switching memory for high density storage and computing
Xiao-Xin Xu(许晓欣), Qing Luo(罗庆), Tian-Cheng Gong(龚天成), Hang-Bing Lv(吕杭炳), Qi Liu(刘琦), and Ming Liu(刘明). Chin. Phys. B, 2021, 30(5): 058702.
[2] TiOx-based self-rectifying memory device for crossbar WORM memory array applications
Li-Ping Fu(傅丽萍), Xiao-Qiang Song(宋小强), Xiao-Ping Gao(高晓平), Ze-Wei Wu(吴泽伟), Si-Kai Chen(陈思凯), and Ying-Tao Li(李颖弢). Chin. Phys. B, 2021, 30(1): 016103.
[3] The drying of liquid droplets
Zechao Jiang(姜泽超), Xiuyuan Yang(杨修远), Mengmeng Wu(吴萌萌), Xingkun Man(满兴坤). Chin. Phys. B, 2020, 29(9): 096803.
[4] In-memory computing to break the memory wall
Xiaohe Huang(黄晓合), Chunsen Liu(刘春森), Yu-Gang Jiang(姜育刚), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(7): 078504.
[5] Conserved quantities and adiabatic invariants of fractional Birkhoffian system of Herglotz type
Juan-Juan Ding(丁娟娟), Yi Zhang(张毅). Chin. Phys. B, 2020, 29(4): 044501.
[6] Non-Born-Oppenheimer study of the muonic molecule ion 4Heμ+
Hang Yang(杨航), Meng-Shan Wu(吴孟山), Yi Zhang(张屹), Ting-Yun Shi(史庭云), Kalman Varga, Jun-Yi Zhang(张俊义). Chin. Phys. B, 2020, 29(4): 043102.
[7] Soliton guidance and nonlinear coupling for polarized vector spiraling elliptic Hermite-Gaussian beams in nonlocal nonlinear media
Chunzhi Sun(孙春志), Guo Liang(梁果). Chin. Phys. B, 2019, 28(7): 074206.
[8] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
[9] A new type of adiabatic invariants for disturbednon-conservative nonholonomic system
Xin-Xin Xu(徐鑫鑫), Yi Zhang(张毅). Chin. Phys. B, 2019, 28(12): 120402.
[10] Conservation laws for Birkhoffian systems of Herglotz type
Yi Zhang(张毅), Xue Tian(田雪). Chin. Phys. B, 2018, 27(9): 090502.
[11] High uniformity and forming-free ZnO-based transparent RRAM with HfOx inserting layer
Shi-Jian Wu(吴仕剑), Fang Wang(王芳), Zhi-Chao Zhang(张志超), Yi Li(李毅), Ye-Mei Han(韩叶梅), Zheng-Chun Yang(杨正春), Jin-Shi Zhao(赵金石), Kai-Liang Zhang(张楷亮). Chin. Phys. B, 2018, 27(8): 087701.
[12] Topological classification of periodic orbits in Lorenz system
Chengwei Dong(董成伟). Chin. Phys. B, 2018, 27(8): 080501.
[13] An analytical variational method for the biased quantum Rabi model in the ultra-strong coupling regime
Bin-Bin Mao(毛斌斌), Maoxin Liu(刘卯鑫), Wei Wu(吴威), Liangsheng Li(李粮生), Zu-Jian Ying(应祖建), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2018, 27(5): 054219.
[14] Resonances for positron-helium and positron-lithium systems in kappa-distribution plasma
Zi-Shi Jiang(姜子实), Ya-Chen Gao(高亚臣), Sabyasachi Kar, Kurunathan Ratnavelu. Chin. Phys. B, 2018, 27(12): 123402.
[15] Analysis of tail bits generation of multilevel storage in resistive switching memory
Jing Liu(刘璟), Xiaoxin Xu(许晓欣), Chuanbing Chen(陈传兵), Tiancheng Gong(龚天成), Zhaoan Yu(余兆安), Qing Luo(罗庆), Peng Yuan(袁鹏), Danian Dong(董大年), Qi Liu(刘琦), Shibing Long(龙世兵), Hangbing Lv(吕杭炳), Ming Liu(刘明). Chin. Phys. B, 2018, 27(11): 118501.
No Suggested Reading articles found!