Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 016702    DOI: 10.1088/1674-1056/27/1/016702
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Two types of ground-state bright solitons in a coupled harmonically trapped pseudo-spin polarization Bose–Einstein condensate

T F Xu(徐天赋)
Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  We study two types of bright solitons in an attractive Bose-Einstein condensate with a spin-orbit interaction. By solving the coupled nonlinear Schrödinger equations with the variational method and the imaginary time evolution method, fundamental properties of solitons are carefully investigated in different parameter regimes. It is shown that the detuning between the Raman beam and energy states of the atoms dominates the ground state type and spin polarization strength. The soliton dynamics is also studied for various moving velocities for zero and nonzero detuning cases. We find that the shape of individual component solitons can be maintained when the moving speed of solitons is low and the detuning is small in the coupled harmonically trapped pseudo-spin polarization Bose-Einstein condensate.
Keywords:  bright solitons      spin-orbit interaction      spin polarization     
Received:  07 August 2017      Published:  05 January 2018
PACS:  67.85.-d (Ultracold gases, trapped gases)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304270 and 11475144).
Corresponding Authors:  T F Xu     E-mail:  tfxu@ysu.edu.cn

Cite this article: 

T F Xu(徐天赋) Two types of ground-state bright solitons in a coupled harmonically trapped pseudo-spin polarization Bose–Einstein condensate 2018 Chin. Phys. B 27 016702

[1] Xiao D, Chang M C and Niu Q 2010 Rev. Mod. Phys. 82 1959
[2] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[3] Žutić I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[4] Zhang Y P, Mao L and Zhang C W 2012 Phys. Rev. Lett. 108 035302
[5] Lin Y J, Jiménez-García K and Spielman I B 2011 Nature 471 83
[6] Lin Y J, Compton R L, Perry A R, Phillips W D, Porto J V and Spielman I B 2009 Phys. Rev. Lett. 102 130401
[7] Lin Y J, Compton R L, Jimenez-Garca K, Porto J V and Spielman I B 2009 Nature 462 628
[8] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
[9] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 296 1290
[10] Kevrekidis P G and Frantzeskakis D J 2016 Rev. Phys. 1 140
[11] Wu C 2009 Mod. Phys. Lett. B 23 1
[12] Zhu Q, Zhang C and Wu B 2013 Europhys. Lett. 100 50003
[13] Wu C, Mondragon-Shem I and Zhou X F 2011 Chin. Phys. Lett. 28097102
[14] Xu Y, Zhang Y and Wu B 2013 Phys. Rev. A 87 013614
[15] Gautam S and Adhikari S K 2015 Phys. Rev. A 91 063617
[16] Li Y E and Xue J K 2016 Chin. Phys. Lett. 33 100502
[17] Liu Y and Zhang S Y 2016 Chin. Phys. B 25 090304
[18] Öhberg P and Santos L 2001 Phys. Rev. Lett. 86 2918
[19] Achilleos V, Stockhofe J, Kevrekidis P G, Frantzeskakis D J and Schmelcher P 2013 Europhys. Lett. 103 20002
[20] Kevrekidis P G, Susanto H, Carretero-González R, Malomed B A and Frantzeskakis D J 2005 Phys. Rev. E 72 066604
[21] Becker C, Stellmer S, Soltan-Panahi P, Dörscher S, Baumert M, Richter E M, Kronjäger J, Bongs K and Sengstock K 2008 Nat. Phys. 4 496
[22] Hamner C, Chang J J, Engels P and Hoefer M A 2011 Phys. Rev. Lett. 106 065302
[23] Pérez-García V M and Beitia J B 2005 Phys. Rev. A 72 033620
[24] Salasnich L and Malomed B A 2006 Phys. Rev. A 74 053610
[25] Kartashov Y V, Konotop V V and Abdullaev F K 2013 Phys. Rev. Lett. 111 060402
[26] Zhang Y, Xu Y and Busch T 2015 Phys. Rev. A 91 043629
[27] Sakaguchi H, Li B and Malomed B A 2014 Phys. Rev. E 89 032920
[28] Chiofalo M L, Succi S and Tosi M P 2000 Phys. Rev. E 62 7438
[29] Celik C and Duman M 2012 J. Comput. Phys. 231 1743
[30] Zhai H 2015 Rep. Prog. Phys. 78 026001
[31] Achilleos V, Frantzeskakis D J, Kevrekidis P G and Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101
[32] Xu Y, Zhang Y and Zhang C 2015 Phys. Rev. A 92 013633
[33] Zhou Z, Zhong H H, Zhu B, Xiao F X, Zhu K and Tan J T 2016 Chin. Phys. Lett. 33 110301
[1] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[2] Spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne self-compensated atomic comagnetometer
Yan Lu(卢妍), Yueyang Zhai(翟跃阳), Yong Zhang(张勇), Wenfeng Fan(范文峰), Li Xing(邢力), Wei Quan(全伟). Chin. Phys. B, 2020, 29(4): 043204.
[3] Spin flip in single quantum ring with Rashba spin-orbit interation
Duan-Yang Liu(刘端阳), Jian-Bai Xia(夏建白). Chin. Phys. B, 2018, 27(3): 037201.
[4] Three-dimensional modulations on the states of polarization of light fields
Peng Li(李鹏), Dongjing Wu(吴东京), Sheng Liu(刘圣), Yi Zhang(章毅), Xuyue Guo(郭旭岳), Shuxia Qi(齐淑霞), Yu Li(李渝), Jianlin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 114201.
[5] Two-dimensional transport and strong spin-orbit interaction in SrMnSb2
Jiwei Ling(凌霁玮), Yanwen Liu(刘彦闻), Zhao Jin(金昭), Sha Huang(黄沙), Weiyi Wang(王伟懿), Cheng Zhang(张成), Xiang Yuan(袁翔), Shanshan Liu(刘姗姗), Enze Zhang(张恩泽), Ce Huang(黄策), Raman Sankar, Fang-Cheng Chou, Zhengcai Xia(夏正才), Faxian Xiu(修发贤). Chin. Phys. B, 2018, 27(1): 017504.
[6] Spin polarization and dispersion effects in emergence of roaming transition state for nitrobenzene isomerization
Zhi-Yuan Zhang(张志远), Wan-Run Jiang(姜万润), Bo Wang(王波), Yan-Qiang Yang(杨延强), Zhi-Gang Wang(王志刚). Chin. Phys. B, 2018, 27(1): 013102.
[7] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[8] Quantum transport through a Z-shaped silicene nanoribbon
A Ahmadi Fouladi. Chin. Phys. B, 2017, 26(4): 047304.
[9] Moving bright solitons in a pseudo-spin polarization Bose-Einstein condensate
Tian-Fu Xu(徐天赋), Yu-Feng Zhang(张玉峰), Lei-Chao Xu(许磊超), Zai-Dong Li(李再东). Chin. Phys. B, 2017, 26(10): 100304.
[10] Topological phase in one-dimensional Rashba wire
Sa-Ke Wang(汪萨克), Jun Wang(汪军), Jun-Feng Liu(刘军丰). Chin. Phys. B, 2016, 25(7): 077305.
[11] Thermodynamic behaviour of Rashba quantum dot in the presence of magnetic field
Sukirti Gumber, Manoj Kumar, Pradip Kumar Jha, Man Mohan. Chin. Phys. B, 2016, 25(5): 056502.
[12] Current induced nonequilibrium spin polarization in semiconductor-nanowire/s-wave superconductor junctions with strong spin-orbit coupling
Nai-Qing Liu(刘乃清), Li-Jie Huang(黄立捷), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2016, 25(2): 027201.
[13] Optical nuclear spin polarization in quantum dots
Ai-Xian Li(李爱仙), Su-Qing Duan(段素青), Wei Zhang(张伟). Chin. Phys. B, 2016, 25(10): 108506.
[14] Current-induced pseudospin polarization in silicene
Wang Lei, Zhu Guo-Bao. Chin. Phys. B, 2014, 23(9): 098503.
[15] Properties of pseudospin polarization on a graphene-based spin singlet superconducting junction
Jia Shuan-Wen, Wang Jun-Tao, Yang Yan-Ling, Bai Chun-Xu. Chin. Phys. B, 2013, 22(8): 087408.
No Suggested Reading articles found!