1 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
In this paper, we demonstrate bias-selectable dual-band short- or mid-wavelength infrared photodetectors based on In0.24Ga0.76As0.21Sb0.79 bulk materials and InAs/GaSb type-II superlattices with cutoff wavelengths of 2.2 μm and 3.6 μ m, respectively. At 200 K, the short-wave channel exhibits a peak quantum efficiency of 42% and a dark current density of 5.93×10-5 A/cm2 at 500 mV, thereby providing a detectivity of 1.55×1011 cm·Hz1/2/W. The mid-wave channel exhibits a peak quantum efficiency of 31% and a dark current density of 1.22×10-3 A/cm2 at -300 mV, thereby resulting in a detectivity of 2.71×1010 cm·Hz1/2/W. Moreover, we discuss the band alignment and spectral cross-talk of the dual-band n-i-p-p-i-n structure.
(Charge carriers: generation, recombination, lifetime, and trapping)
Fund:
Project supported by the National Basic Research Program of China (Grant Nos. 2016YFB0402403 and 2013CB932904), the National Natural Science Foundation of China (Grant Nos. 61290303 and 61306013), and China Postdoctoral Science Foundation (Grant No. 2016M601100).
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.