Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 090702    DOI: 10.1088/1674-1056/26/9/090702
GENERAL Prev   Next  

Elastic strain response in the modified phase-field-crystal model

Wenquan Zhou(周文权)1, Jincheng Wang(王锦程)1, Zhijun Wang(王志军)1, Yunhao Huang(黄赟浩)1, Can Guo(郭灿)1, Junjie Li(李俊杰)1, Yaolin Guo(郭耀麟)2
1 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China;
2 Ningbo Institute of Industrial Technology, Ningbo 315201, China
Abstract  

To understand and develop new nanostructure materials with specific mechanical properties, a good knowledge of the elastic strain response is mandatory. Here we investigate the linear elasticity response in the modified phase-field-crystal (MPFC) model. The results show that two different propagation modes control the elastic interaction length and time, which determine whether the density waves can propagate or not. By quantitatively calculating the strain field, we find that the strain distribution is indeed extremely uniform in case of elasticity. Further, we present a detailed theoretical analysis for the orientation dependence and temperature dependence of shear modulus. The simulation results show that the shear modulus reveals strong anisotropy and the one-mode analysis provides a good guideline for determining elastic shear constants until the system temperature falls below a certain value.

Keywords:  elastic response      strain distribution      shear modulus      modified phase-field-crystal model  
Received:  21 February 2017      Revised:  06 May 2017      Published:  05 September 2017
PACS:  07.05.Tp (Computer modeling and simulation)  
  81.40.Jj (Elasticity and anelasticity, stress-strain relations)  
  62.20.de (Elastic moduli)  
  02.70.-c (Computational techniques; simulations)  
Fund: 

Project supported by the National Natural Science foundation of China (Grant Nos. 51571165 and 51371151), Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase), China, and the Fundamental Research Funds for the Central Universities, China (Grant No. 3102015BJ(II)ZS001).

Corresponding Authors:  Jincheng Wang     E-mail:  jchwang@nwpu.edu.cn

Cite this article: 

Wenquan Zhou(周文权), Jincheng Wang(王锦程), Zhijun Wang(王志军), Yunhao Huang(黄赟浩), Can Guo(郭灿), Junjie Li(李俊杰), Yaolin Guo(郭耀麟) Elastic strain response in the modified phase-field-crystal model 2017 Chin. Phys. B 26 090702

[1] Zhu T and Li J 2010 Prog. Mater. Sci. 55 710
[2] Du J P, Wang Y J, Lo Y C, Wan L and Ogata S 2016 Phys. Rev. B 94 104110
[3] Chen L Y, Richter G, Sullivan J P and Gianola D S 2012 Phys. Rev. Lett. 109 125503
[4] Wang Y J, Gao G J and Ogata S 2013 Appl. Phys. Lett. 102 041902
[5] Dao M, Lu L, Asaro R J, Hosson D J and Ma E 2007 Acta. Mater. 55 4041
[6] Hessam Y and Kianoosh H 2015 Model. Simul. Mater. Sci. 23 065004
[7] Oxtoby D W 2002 Ann. Rev. Mater. Res. 32 39
[8] Elder K R and Grant M 2004 Phys. Rew. E 70 051605
[9] Elder K R, Katakowski M, Haataja M and Grant M 2002 Phys. Rew. Lett. 88 245701
[10] Wu K A and Karma A 2007 Phys. Rev. B 76 184107
[11] Yang T, Chen Z, Zhang J, Wang Y X and Lu Y L 2016 Chin. Phys. B 26 057802
[12] Guo C, Wang J C, Wang Z J, Guo Y L and Tang S 2015 Phys. Rev. E 92 013309
[13] Chan P Y, Goldenfeld N and Dantzig J 2009 Phys. Rev. E 79 035701
[14] Ren X, Wang J C, Yang Y J and Yang G C 2010 Acta Phys. Sin 59 3595 (in Chinese)
[15] Gao Y J, Huang L L, Deng Q Q, Zhou W Q, Luo Z R and L K 2016 Acta. Mater 117 238
[16] Gao Y J, Luo Z R, Huang L L, Mao H, Huang C G and Lin K 2016 Model. Simul. Mater. Sci. 24 055010
[17] Hu S, Chen Z, Peng Y Y, Liu Y J and Guo L Y 2016 Comp. Mater. Sci. 121 143
[18] Stefanovic P, Haataja M and Provatas N 2006 Phys. Rev. Lett. 96 225504
[19] Zhou W Q, Wang J C, Wang Z J, Zhang Q, Guo C, Li J J and G Y L 2017 Comp. Mater. Sci. 127 121
[20] Stefanovic P, Haataja M and Provatas 2009 Phys. Rev. E 80 046107
[21] Chan P Y, Tsekenis G, Dantzig J, Dahmen K A and Goldenfeld N 2010 Phys. Rev. Lett. 105 015502
[22] Wu K A and Voorhees 2012 Acta. Mater 60 407
[23] Adland A, Karma A, Spatschek R, Buta D and Asta M 2013 Phys. Rev. B 87 024110
[24] Provatas N and Elder K R 2011 Phase-field Methods in Materials Science and Engineering (Urbana: Wiley) p. 158
[25] Wang Y Z and Li J 2010 Acta Mater. 58 1212
[26] Trautt Z T, Adland A, Karma A and Mishin Y 2012 Acta Mater 6528
[27] Wang Z J, Guo Y L, Tang S, Li J J, Wang J C and Zhou Y H 2015 Ultramicroscopy 150 74
[28] Calindo P L, Kret S, Sanchez A M, Laval J Y, Yanez A, Pizarro J, Guerrero E, Ben T and Molina S I 2007 Ultramicroscopy 107 1186
[29] Hytch M J, Snoeck E and kiaas R 1998 Ultramicroscopy 74 131
[30] Pilkey W D and Pilkey D F 2008 Peterson's Stress Concentration Factors (New York: Wiley) p. 105
[31] Wu K A and Voorhees 2009 Phys. Rev. B 80 125408
[1] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[2] Interstitialcy theory of condensed matter states and its application to non-crystalline metallic materials
V A Khonik. Chin. Phys. B, 2017, 26(1): 016401.
[3] The structural, elastic, and electronic properties of ZrxNb1-xC alloys from first principle calculations
Sun Xiao-Wei, Zhang Xin-Yu, Zhang Su-Hong, Zhu Yan, Wang Li-Min, Zhang Shi-Liang, Ma Ming-Zhen, Liu Ri-Ping. Chin. Phys. B, 2013, 22(10): 107105.
[4] Prediction of a superhard material of ReN4 with a high shear modulus
Zhao Wen-Jie, Xu Hong-Bin, Wang Yuan-Xu. Chin. Phys. B, 2010, 19(1): 016201.
[5] Strain distributions and electronic structure of three-dimensional InAs/GaAs quantum rings
Liu Yu-Min, Yu Zhong-Yuan, Jia Bo-Yong, Xu Zi-Huan, Yao Wen-Jie, Chen Zhi-Hui, Lu Peng-Fei, Han Li-Hong. Chin. Phys. B, 2009, 18(11): 4667-4675.
[6] Shear modulus of shock-compressed LY12 aluminium up to melting point
Yu Yu-Ying, Tan Hua, Hu Jian-Bo, Dai Cheng-Da. Chin. Phys. B, 2008, 17(1): 264-269.
No Suggested Reading articles found!